Solvent Recovery and Recycle

John Gawalt Jaired Re

Department of Chemical Engineering Virginia Polytechnic Institute and State University Submitted: November 20, 2015 Revised: December 13, 2015

Acknowledgements

We are extremely grateful for the opportunity to revise our design report. The completion of our project would not have been possible without the continued support and guidance our professor, Dr. Bortner, and his teaching assistants. We would also like to thank Dr. Liu for his exceptional training in ASPEN Plus, and for providing us with relevant engineering heuristics necessary for a complete design.

<u>Contents</u>

Acknowledgements	2
Executive Summary	6
1. Introduction	8
2. Process Description	9
i. P&ID	9
ii. Critical Streams	.10
ii. Function of Major Equipment	.10
a. Acetonitrile Column	. 10
b. Toluene Column	.11
c. Flash Drum	.11
3. Separation Tasks: Sizing and Costs	.12
i. ACN Column	.12
a. Binary Analysis and Operating Pressure	. 12
b. Column Sizing and Pricing	.13
c. Condenser and Reboiler Sizing	.14
ii. Toluene Tower	.15
a. Binary Analysis and Operating Pressure	. 15
b. Column Sizing and Pricing	.16
c. Condenser and Reboiler	. 17
iii. Flash Drum	.18
4. Auxiliary Tasks: Sizing and Costing	.20
i. Vacuum Pump	.20
ii. Positive Displacement Pumps	.21
iii. Reflux Drums	.21
iii. Mixer	.22
iv. Heat Exchanger Network	.22
v. Storage Tanks	.24
5. Process Economics	.26
i. Delivered Equipment Cos	.26
III. Labor	.28
IV. Manufacturing Cost	.28
V. Rate of Return	.29

6. Safety and quality control	32
i. Spill Containment	32
ii.Fire Prevention	32
iii. Maximum Allowable operating Conditions	33
iv. HAZOP	34
v. Personal Protective Equipment	34
Acetonitrile	35
7. Conclusion	36
Appendix A: Stream Tables	38
i. Table A-1 – Stream Table Part 1	38
ii. Table A-2 – Stream Table Part 2	39
iii. Table A-3 – Stream Table Part 3	40
iv. Table A-4 – Stream Table Part 4	41
Appendix B: Main Process Flowsheet	42
Appendix C: Equipment Summary	43
I. Distillation Column Summary	43
II. Reflux Drum Summary	44
III. Pump Summary	44
VI. Heat Exchanger Summary Part 1: E1 - E3,B	46
VII: Heat Exchanger Summary: E4,A-D	46
VIII: Mixer Summary	47
IX: Condenser and Reboiler Summary	47
X: Summary of Delivered Equipment Costs	49
Appendix D: FMEA Summary	50
i. FMEA Definitions	50
The subsequent pages outline the results of our Failure Mode and Effects Analysis. The tables below define the rank ordered severity, occurrence, and detection parameters	50
ii. FMEA Tables	52
Appendix E: HAZOP Summary	60
i. Determination of risk hierarchy	60
ii. Key Tables	62
Appendix F: Utility Summary	0
i. Electric Usage:	0

ii. Cooling Water Usage0
iii. MEK Usage 1
iv. Steam Usage 1
Appendix G: Inherently Safer Design Checklist
Appendix H: Sample Calculations
i. Economics
a. Delivered Equipment Cost7
b. Fixed Capital Investment7
c. Total Product Cost7
d. Working Capital Investment (WCI)7
e. Total Capital Investment (TCI)7
f. Labor Costs
g. Annual Operating Cost (Total)8
h. SOYD Depreciation Value8
i. After Tax Cash Flow8
j. ROR9
ii. Equipment Sample Calculations9
a. Liquid Ring Vacuum Pump9
b. Mixer:9
c. Column Height9
d. Flash Drum9
Appendix I: References

Executive Summary

The object of this report is to propose a potential solvent recovery system for an existing siloxane polymerization unit. The polymerization unit has three waste streams, each of which is sequentially separated into the desired components: Acetonitrile, Toluene, and P-Xylene. Solvent grade Acetonitrile and Toluene are both expensive components and it would be in our best financial interest to maximize the amount of recycled solvent.

Our design incorporates two packed distillation towers along with a single stage flash drum to achieve mass purities of 99.83% Acetonitrile and 99.92% Toluene.

Figure I-1: Main process Flow Sheet

Figure I-1 displays all equipment used in our process with the exception of the backup pumps. All modeling calculations and sensitivity analyses are handled by ASPEN+. Our process description section goes into detail about each major unit and its associated auxiliary tasks such as pressure and temperature changes.

Our economic analysis for this process is conducted using a 20 year Sum of Years Digits depreciation scheme assuming a tax rate of 40%. For a total capital investment of \$2.5 million our process earns an average of \$3.7 million annually after taxes. This corresponds to a 144% rate of return on our investment. We also examine the effect of product sales price on our rate of return to predict the long term viability of our design.

Figure I-1: This plot depicts the response of the rate of return when the product prices are subjected to change.

Figure I-1 Shows the behavior of our rate of return as a function of the product sales prices. From this plot it is clear that as long as the price for each component remains above \$1/kg, our process will continuously add value to the company.

Our process is also designed with safety as the highest priority. HAZOP, FMEA, and Inherently safer design analyses found later in this report verify that our process is designed to minimize loss in terms of employee health and equipment safety.

We thank you for taking the time to consider our design solution. Please do not hesitate to contact us with any additional questions or concerns you may have.

1. Introduction

The formation of siloxane based polymers takes place in solution with strong solvents such as acetonitrile and toluene. When the polymerization is complete, the solvents must be separated once more before they can be reintroduced to the system. This is the basic idea behind our design: to minimize financial losses due to wasted solvent.

Acetonitrile is very prevalent in the chemical industry and is commonly used as a solvent for liquidliquid or liquid-solid extraction. The major benefit of acetonitrile as a solvent is that it can dissolve both organic and inorganic materials. Similarly, toluene is commonly used in industry as an organic solvent, or gasoline additive. Our design is aimed at returning solvents to the polymerization unit to save on raw material cost for each of these solvents.

2. Process Description

i. P&ID

Figure 2-1: Process and Instrumentation Diagram for Solvent Recovery from a Siloxane Process.

P&IDs provide a basis in the developmental stage of system control schemes. This opens avenues to more in depth safety and operational investigations including FMEA and HAZOP. We converged on a system of sensors and controllers that will hold safe, steady state operation as long as possible. Streams around distillation columns should be equipped with temperature, flowrate, and pressure sensors. Streams entering and exiting heat exchangers should have temperature and flow sensors to ensure there is no cross flow, and sufficient heat is exchanged. Streams that enter or exit a pump must at least have a pressure sensor. Streams that exit into an open container that may contain chemicals above their flash point should have at least a temperature sensor and a control valve near the exit with an innate fail close setting. The recycle stream entering the heat exchanger must have a valve with an innate fail close setting. The stream exiting the mixer should have a temperature, pressure, and flow sensor to ensure the correct feed

specifications are met. All additional sensors are added to facilitate quick, efficient troubleshooting when an issue arises.

ii. Critical Streams

Our process is designed with the intent of returning pure acetonitrile and toluene to the siloxane plant for reuse. The polymerization process produces three effluent flows named feeds A, B, and C. **Table 2-1** below shows the compositions and flowrates for each of these feed streams.

Stream	Flow Rate $\left[\frac{kg}{kg}\right]$	Composition (wt%)		
	[hr]	Toluene	Acetonitrile	Siloxane
Feed A	270	98.5	0	1.5
Feed B	60	96.5	2.0	1.5
Feed C	200	19.5	78.5	2.0

Table 2-1: Feed	Stream	Compositions
-----------------	--------	--------------

The main goal of this process is to return solvents of high enough purity to be reused in the initial polymerization plant. **Table 2-2** outlines the critical stream data for each effluent stream from our process.

Stream Name	Flow Rate	Temp	Composition [wt. %]			
	$\left[\frac{kg}{hr}\right]$	[°]	Acetonitrile	Toluene	P-Xylene	Siloxane
TOL Product	362.8	4	0.073	99.92	0.003	trace
ACN Product	158.2	5	99.83	0.124	0.045	trace
Waste	36.6	27	trace	0.4	75.2	24.4
Xylene Recycle	85.0	27	trace	0.8	85.2	14

Table 2-2: Critical Product Stream Data

Table 2-2 is a compilation of the results from our ASPEN Plus simulations, showing the outlet temperature of each stream before it enters storage as well as the composition of each stream. More extensive stream tables are located in **Appendix A.** The following subsection consists of an overview of each major separation unit used in our process.

ii. Function of Major Equipment

a. Acetonitrile Column

The first major unit in our process is a 25 stage packed vacuum distillation column measuring 0.76 m in diameter. A vacuum pump is attached to the total condenser in this tower to ensure the separation is run at 0.1 bar. This unit is charged with feeds B, C, and a P-Xylene stream and it tasked with separating acetonitrile from the remaining mixture. P-Xylene is used to keep siloxane in solution and facilitate the separation of acetonitrile. The distillate stream from this tower is the final acetonitrile product at 99.83 % purity. This stream is then cooled below to 5 \mathcal{C} and stored. The bottoms of this column is fed to the second distillation tower. Specific sizing and costing information is covered in the discussion as well as in the equipment summary.

b. Toluene Column

Toluene is separated at atmospheric pressure in a 24 stage packed column with a diameter of 0.6m. This column is charged with the bottoms flow out of column one as well as feed A on stages 15 and 8 respectively. This column produces a distillate stream composed of 99.92% toluene. Similar to the column before, the toluene product is cooled below it's to a temperature of 27 $^{\circ}$ before being sent to storage. The bottom stream is comprised primarily of p-xylene and siloxane. This stream is fed to a flash drum to return xylene to the process.

c. Flash Drum

Our flash drum operates near the vaporization point of P-Xylene at a temperature of ##### $^{\circ}$ and a vapor fraction of 0.72 entering the drum. Siloxane is an undesired waste product and must be make up no more than 25% of any stream to avoid solid formation within the system. We desire to recover as much of our separating agent as possible, therefore our flash drum is designed to dispose a waste stream containing 24.5% siloxane. We discuss the details of sizing and costing in Section 3.

3. Separation Tasks: Sizing and Costs

The separations are carried out in the order most fitting to that laid out by the separation heuristics. The goal of these separation processes is to yield the highest purity acetonitrile and toluene streams while minimizing both cost and waste. Acetonitrile has the lowest boiling point and is separated first, followed by toluene and finally p-xylene.

i. ACN Column

a. Binary Analysis and Operating Pressure

Acetonitrile is the first component separated due its lower boiling point. This separation takes place in a staged packed distillation tower. The column pressure is determined by a binary analysis of acetonitrile and toluene. A higher level of separation is indicated by a greater distance between the equilibrium data and the y=x line.

Figure 3-1: This represents the binary interaction between acetonitrile and toluene. The father the equilibrium line is from the y-x line, the greater the degree of separation.

The x-y diagram above shows that any pressure greater than 0.1 bar will prevent the purity of acetonitrile in the distillate stream from reaching its desired value of 99.82 %. This barrier is due to the azeotrope experienced by the mixture under those system conditions. The azeotrope

composition is raised by adding P-Xylene. Xylene functions as a separating agent, increasing the relative volatility of acetonitrile while simultaneously entraining siloxane in the liquid phase. In order to achieve a vacuum of 0.1 bar, our design uses a liquid ring vacuum pump attached to the total condenser. Sizing information for the vacuum pump is located in Section 4.

b. Column Sizing and Pricing

Our ACN column is a packed column with 1.84m of Sulzer metal gauge packing, type CY with an equivalent of 25 ideal stages. We chose to use packed columns in our design because our columns are too narrow to accommodate stages. The feed is charged to the column on stage 22 with the xylene recycle stream entering on stage 8. The ideal operating temperature ranges from 52.8 C in the bottoms to 21.3 C in the distillate. Under these conditions, a purity of 99.83 % acetonitrile is recovered in the product stream.

A summary of the column one specifications is shown in **Table 3-1** below.

Acetonitrile Col	umn Specificat	ions		
Specifications	Acetonitrile Tower			
Bot. Temperature [°C]		52.88		
Top Temperature [°C]		21.30		
Pressure [bar]	0.10			
Diameter [m]	0.77			
Height [m]	2.39			
Pack Height [m]	1.84			
# of Trays	23			
Equivalent # Stages	25			
Feed-1	Feed B + C 2			
Feed-2	XyleneRcy			
Orientation	Vertical			
Structured Packing Type	CY by Sulzer			
HETP [m]	0.08			
Material	STANDARD			
Total Cost [\$]	\$66,470			
Distillate Stream Compositions	Species	wt. Frac		
	ACN	0.9983		
	TOLUENE	0.0012		

Table 3-1: Column 1 Specifications

	P-XYLENE	0.0005
	SILOXANE	trace
Bottoms Stream Compositions	Species	wt. Frac
	ACN	
	TOLUENE	0.00121
	P-XYLENE	0.45646
	SILOXANE	0.07364

The table above lists operating conditions, and the sizing specifics of the distillation tower. The height of the column depended ultimately on the choice of packing material. We chose CY metal gauze packing because it offers a low overall height and is commonly used for vacuum operations. The HETP value of 0.08m is provided graphically by Sulzer; we chose the packing with the lowest possible HETP value that suits vacuum distillation. The height of packing is determined by the following equation:

$$H_{packing} = [\# Theoretical Stages] \cdot [HETP_{packing}]$$
[3-1]

This equation gives us our pack height of 1.84 m. To calculate the column height we add an additional 15% of the pack height to the top and bottom of the column effectively increasing the pack height 30%. This additional height is to account for the space between the packing and the reboiler/condenser at the bottom/top of the column.

$$H_{Column} = 1.3 \cdot H_{packing}$$
[3-2]

This give us our overall height of 2.39 m with a diameter of 0.77m as generated by ASPEN Plus.

The column is priced in EconExpert as a vertically oriented packed tower with the dimensions and operating conditions discussed above. For a packed height of 1.84 m and an operating pressure of 0.1 bar, the material and pressure factors are 4.0 and 1.7 respectively. This gives a base cost of \$8,889 and a total cost, before delivery, of \$60,420.

We will now consider the sizing and thermal duty of the condenser and reboiler.

c. Condenser and Reboiler Sizing

A 4.2 m² total condenser with a heat duty of -160 kW is used to condense the distillate which exits at a rate of $158.2 \frac{kg}{hr}$ at 21.4 °C. The specifications for the condenser and reboiler are shown below.

Table 3-2 ACN Tower Condenser and Reboiler

ACN Column Total Condenser and Partial Reboiler Specifications

Specifications	R1		C1	
Area [m ²]		3.9	4.16	
Duty [kW]		185.1	-160.2	
Туре	kettle		kettle	
	SEP-1 Bottoms	Low Pressur e Steam	SEP-1 Distillate	MEK
Pressure in [kPa]	10	172	10	100
Pressure out [kPa]	10	172	10	100
Temperature in [°C]	56	115.6	21.4	-29
Temperature Out [°C]	51.6	115.6	21.4	11.3 4.0
Vapor Fraction In	0	1	1	0
Vapor Fraction Out	0.774	1	0	0
Flow rate $\left[\frac{kg}{hr}\right]$	2160.5	1000	711.9	7190

To size the condensers we use Aspen Plus to generate condenser Hcurves. We use the Hcurves to determine the vapor fraction and temperature leaving the condenser as well as the heat duty required to make the change. We then specify a pseudo-stream as the vapor entering the condenser and connect that stream to a heat exchanger. Varying MEK as the cooling utility we set design specifications to the temperatures and vapor fractions found in the condenser Hcurves.

We use a similar method to size the reboilers. Reboiler Hcurves are generated using Aspen Plus to determine the temperature and vapor fraction leaving the reboiler as well as the heat duty required. A Pseudo-stream is created and used as the liquid entering the reboiler. This Pseudo-stream is fed into a heat exchanger. Using appropriate process steam as the heating utility set the design specifications in accordance with the values found by the reboiler Hcurves. For the Acetonitrile column we calculated a reboiler area of 3.8891 m^2 and a condenser area of 4.16 m^2 .

ii. Toluene Tower

a. Binary Analysis and Operating Pressure

The second separation in our process takes place between toluene and p-xylene. The operating pressure for the toluene tower is determined in the exact same fashion as for the acetonitrile tower. The results from the binary analysis are show below.

Figure 3-2: This represents the binary interaction between acetonitrile and toluene. The father the equilibrium line is from the y-x line, the greater the degree of separation.

b. Column Sizing and Pricing

This column produces 99.92 % toluene product at a rate of 362.8 $\frac{kg}{hr}$. Our Toluene tower is 0.447m in diameter and packed with 4.37m of FLEXIPAC metal packing material type 700Y with an HETP of 0.191m. This packing is equivalent to 24 theoretical stages in a traditional column. Our initial design used the same packing material in both columns but we did not account for the high temperature of column two which would not suit Sulzer type CY packing.

We determine the packed height and column height from equations [3-1] and [3-2] described in the ACN column sizing section. Our toluene column has a diameter of 0.62 m and a height of 4.56. Additional specifications including cost are shown in the table below.

Toluene Column Specifications			
Specifications	Toluene Tower		
Bot. Temperature [°C]	137.8		
Top Temperature [°C]	109.9		

Table 3-3. Tolucine Column Cummary

Pressure [bar]	1.00		
Diameter [m]	0.617		
Height [m]	4.56		
Pack Height [m]	4.37		
# of Trays		21	
Equivalent # Stages		23	
Feed 1 Stage	Feed A 8		
Feed 2 Stage	Bot-1	15	
Orientation	Vertical		
Structured Packing Type	700Y		
HETP [m]	0.191		
Material	STANDARD		
Total Cost [\$]	\$99,360		
Distillate Stream Compositions	Species wt. Fra		
	ACN	0.00072	
	TOLUENE	0.99925	
	P-XYLENE	0.00003	
	SILOXANE	trace	
Bottoms Stream Compositions	Species	wt. Frac	
	ACN	trace	
	TOLUENE	0.00619	
	P-XYLENE	0.82978	
	SILOXANE	0.16403	

Koch-Glitsch provides critical sizing information such as the HETP for each packing material. We chose to use 700Y FLEXIPAC because it is the most efficient packing material suited for all applications. The HETP value of 0.191m provided is based on a distillation at total reflux subjected to minor pressure/suction.

The toluene column is priced using EconExpert and is classified as a vertically oriented process vessel with structured packing and an operating pressure of 1.0barg. EconExpert gives a base cost of \$13,280. This cost is then multiplied by the pressure and material factors to give a final cost estimate of approximately \$100,000.

c. Condenser and Reboiler

In addition to the staged packing, the column is also equipped with a total condenser and a partial reboiler. The specifications for each are shown below.

Table 3-4: Toluene Column Condenser and Reboiler Summary

Toluene Column Total Condenser and Partial Reboiler

Specifications	R2		C2	
Area [m2]		5.323	2.79	
Duty [kW]		169.825	-165	
Туре		kettle	kettle	
	SEP-2 High Pressure Bottoms Steam		SEP-2 Distillate	Cooling Water
Pressure in [kPa]	100	1033	100	100
Pressure out [kPa]	100	1033	100	100
Temperature in [°C]	137.7	181.4	109.81	35
Temperature Out [°C]	137.9	172.4	102	99.65
Vapor Fraction In	0	1	1	0
Vapor Fraction Out	0.783	1	0	0.074
Flow rate [kg/hr]	2339	13500	1632.6	2000

The sizing process for these reboilers and condensers is the same as the one taken for the ACN reboilers and condensers.

The bottoms stream from this column contains high grade p-xylene and therefore it is favorable to subject the stream to simple flash distillation and recycle the p-xylene back to the acetonitrile tower.

iii. Flash Drum

The final separation is carried out in a flash drum immediately after the toluene separation column. The main function of this flash drum is to return xylene to the first column, and remove the siloxane waste from the original polymerization process.

The exiting stream compositions of the flash drum are highly sensitive to minor changes in flash temperature. We determine the optimum temperature of 138 C with a fraction vaporized of 0.7. Under these operating conditions, the flash drum returns xylene at 86 % purity. This recycle stream is mixed with pure xylene to maintain a constant feed of $100 \frac{kg}{hr}$ to the acetonitrile column. The recycle stream has a flash point of 27.2 °C and must be cooled below this temperature before allowed to enter the mixer.

Flash Separation of P-Xylene and Siloxane Operating Specifications		
Specifications Flash Drum		
Temperature [°C]	138.00	
Pressure [bar]	1.00	
Diameter [m]	0.15	
Height[m]	0.48	
Volume [m ³]	0.01	

	Table 3-5:	Flash	Drum S	Specifications
--	------------	-------	--------	----------------

Heat Duty [kW]		7.77
Material	316SS	
Cost	\$14,581.00	
	Component	Weight Fraction
Vapor Stream Compositions (wt.frac.)	Acetonitrile	-trace-
	Toluene	0.0072
	p-Xylene	0.85
	Water	0
	Siloxane	0.14
Liquid Stream Compositions (wt. frac.)	Acetonitrile	-trace-
	Toluene	0.003
	p-Xylene	0.751
	Water	0
	Siloxane	0.245

4. Auxiliary Tasks: Sizing and Costing

In addition to the three main separation tasks several auxiliary units are incorporated in this process including:

- i. Vacuum Pump
- ii. Positive Displacement Pumps
- iii. Reflux Drums
- iv. Mixer Motionless, Open Air
- v. Heat Exchangers
- vi. Storage Tanks
- vii. Material of Construction Analysis
 - i. Vacuum Pump

The separation carried out in the first column requires a sub-atmospheric pressure determined by our VLE binary analysis to be 0.1 bar. To pull the vacuum we chose to use a liquid ring pump because they are easy to maintain. Liquid ring pumps only have one moving part, leaving the majority of the mechanical duty to the fluid. To determine the power required to drive the pump we consult pump performance curves provided by Aerstin and Street (1978). The performance curve plots horse power and volume flow rate of the pump versus the suction head. Our design requires 0.9 bar of suction at a volume flow rate of $5.1 \frac{L}{min}$ yielding a 20.4 kW power requirement. The equation below is used to calculate the purchase cost of the liquid-ring pump.

Installed Costs =
$$$28,000 \left[\frac{HP}{10}\right]^{0.5} \cdot \left[\frac{1956}{745}\right]$$
 [4-1]

In the above equation HP represents the power supplied to the fluid in horsepower. The second term in the equation is a corrective factor which adjusts the costs to the proper year. 1956 is the cost index for the current year, 745 was the cost index in 1981. These calculations yield a final estimated pump cost of \$88,600. **Table 4-1** below displays the results of the pump sizing and costing analysis.

Table 4-1: Vacuum	Pump	Summary
-------------------	------	---------

Vacuum Pump		
Specification Vacuum		
Туре	Liquid Ring	
Power [kW] 20		
Flowrate [I/min]		
Pressure in [bar] 1		
Pressure out [bar]		
Cost [\$]	\$88,574	
Material	Stainless Steel	

Table 4-1 is a summary of the sizing and costing analysis conducted for the vacuum pump. We double this cost in our economic analysis to purchase a backup pump that would allow for

continuous production during primary pump maintenance or failure. Stainless Steel and bronze are the materials of choice for liquid-ring pumps as suggested by Aerstin and Street.

ii. Positive Displacement Pumps

The distillate and bottoms streams of column one each require a pump to return the fluid to 1.0 bar of pressure before continuing in the process. Each pump is sized according to its suction pressure and power required. EconExpert gives material and pressure factors of 1.4 and 1.0 respectively, yielding a cost of \$8,880 for each pump. It is not surprising that the cost for each pump is the same as they each operate under the same suction pressure with similar volume flow rates.

Pump Specification				
Specification	Pump 1	Pump 2		
Туре	Positive Displacement	Positive Displacement		
Power [kW]	0.008	0.005		
Flowrate [l/min]	0.257	0.2004		
Differential Head [m]	11.10	11.64		
Presure in [bar]	0.10	0.1		
Pressure out [bar]	1.00	1.00		
Cost [\$]	\$8,880	\$8,880		
Material	Carbon Steel	Carbon Steel		

Table 4-2 summarizes the sizing and costing information for each rotary positive displacement pump in our process. As we did for the vacuum pump, we also include backups for each pump.

iii. Reflux Drums

The reflux drums were sized with a holdup time of 8 minutes, at the end of which the reflux would be half full. These drums are considered to be horizontally aligned and are sized according to the volumetric flowrate from each column. Distillate 1 exits at $3.34 \frac{L}{min}$ yielding a volume of $0.24m^3$. In a similar fashion, the second reflux drum is found to have a volume of $7.73m^3$. Each drum is sized with an optimal length to diameter ratio of 3.0. Using this ratio and the volume after 8 minutes, we are able to determine the dimensions of each drum. Table 4-4: Summary of Reflux Drum Sizing

Reflux Drum Sizing				
Specification	Drum 1	Drum 2		
Diameter [m]	0.320	0.486		
Length[m]	0.959	1.459		
Volume [m^3]	0.2408	0.557		
Flow Rate [l/min]	3.34	7.73		

Holding Time [min]	8	8
Reflux Ratio	3.5	3.5
Liquid Space [%]	50	50
Cost [\$]	\$4,250	\$6,700
Material	Carbon Steel	Carbon Steel

Table 4-4 details each of the reflux drums including their cost. The pricing for these units was carried out in EconExpert. Each reflux drum has a material and pressure factor of 1.0 when carbon-steel is used yielding final costs of \$4,250 and \$6,700 for reflux drums one and two respectively.

iii. Mixer

The mixer in our process is designed to mix the recycled xylene with pure xylene to ensure column one receives a constant supply of separating agent. The ratio of makeup to recycled xylene is controlled in ASPEN Plus with an integrated FORTRAN algorithm. Our mixer of choice was an open top, unstirred mixer with a 70% liquid hold up time of 5 minutes. The mixed stream exits at a rate of $3.94 \frac{L}{min}$ meaning the mixer must be able to hold 19.7L and remain 70% full. We assume a height to diameter ratio of 4 to calculate the dimensions of the mixer. These results are summarized in **Table 4-5** below.

Mixer 1				
Specification	Unstirred, Motionless Mixer			
Hold Time [min]	5			
Volume [m3]	0.0142			
Diameter [m]	0.067			
	Makeup In Recycle In Recycle Out			
Pressure [bar]	1 0.98 1			
Temperature [°C]	20 27 25.11			
Mass Flow [^{kg} / _{hr}]	29.6 81.75 111.4			
Cost [\$]	\$1,780			
Material	Carbon Steel			

Table 4-5: Unstirred Mixer Sizing

Table 4-5 includes the cost of the mixer at approximately \$1,800 a total purchased cost of \$1,190 and a bare module factor of 1.5.

iv. Heat Exchanger Network

Every exchange of heat that takes place in this process follows the guidelines of the table below. Acetonitrile and toluene have very low flash points and they must be cooled below these temperatures before being exposed to the atmosphere upon entering the storage vessel.

Product Flash Points					
Product Stream	Inlet TempOutlet TempFlash[℃][℃]Point [℃]				
ACN	21.54	5	5.5		
TOL	109.22	4	4.4		
Xylene Recycle	137	27	27.2		
WASTE	137	27	27.2		

Table 4-6: Outlet Temperatures and Flash Points of Product Streams

Our process uses counter-current shell and tube heat exchangers along with cooling water and MEK, an organic refrigerant. Neither the cooling water nor the MEK may raise more than 10 C above their supply temperatures of 35 °C and -29 C respectively. We set design specifications in ASPEN Plus to control the flowrate of each coolant stream, ensuring that no thermal crossovers took place.

Our initial process flowsheet included seven heat exchangers, incurred more utility cost because each exchanger had its own source of cooling utility. In our optimized design, we add two additional exchangers, one to heat each feed to the 2nd column, effectively reducing the reboiler duty. The waste stream is used to heat both the bottoms stream from the first column (bot-1 feed) as well as Feed 2A.

Stream Table for Heat Exchanger Network									
Stream	ID	Supply T [C]	Target T [C]	m Flow $\left(\frac{kg}{hr}\right)$	$Cp\left(\frac{Kj}{kgK}\right)$	m Cp $\left(\frac{kJ}{hrK}\right)$	$Q\left(\frac{kJ}{hr}\right)$		
Dist-1	SH 1	21.39	5	158.2	2.06	325.19	5329.90		
Dist-2	SH 2	109.91	4	362.8	2.05	742.28	78614.62		
Recycl e	SH 3	138	27	163.57	1.63	266.27	29556.08		
Waste	SH 4	138	27	248.95	1.71	424.54	47123.52		
Feed A	SC 1	20	100	270	1.658981	447.92	-35833.99		
Bot-1	SC 2	54	64	214.4	1.80	386.17	-3861.67		
			Cooling Req.	120928.4 6					

Table 4-7: Hot and Cold Stream Data for HEN Synthesis

Table 4-7 shows the supply and target temperatures of each stream integrated in our heat exchanger network. Our integrated network reduces the cooling required in the system by using the Feed A and Bot-1 to remove 40MJ/hr from the hot streams. This value is determined by summing the total cooling provided by streams SC1 and SC2. It is impossible to cool SH1 with any process stream without violating minimum approach temperatures. A simplified version of our heat exchanger network is shown below in Figure 4-1.

Figure 4-1: This figure depicts our simplified heat exchanger network. The inlet and outlet temperatures of each stream are displayed in Table 4-7. The cooling utilities, CW and MEK, are available at temperature rages of $[35 \ C \ to \ 45 \ C]$ and $[-29 \ C \ to \ -19 \ C]$ respectively.

After completing the HEN we verify our results by comparing the heat duties of the reboilers and condensers after heat integration. These results are outlined in table 4-8 below. Table 4-8: Reboiler and Condenser Heat Duty Comparison

Heat Integration Results									
Reboiler 1 Reboiler 2 Condenser 1 Condenser 2									
Initial Heat Duty [kW]	185.1	200.3	-162.7	-166.3					
Final Heat Duty [kW]	185	169.8	-160.2	-165					

The toluene column experienced the largest benefit from the heat integration process, reducing the heat duty approximately 40 kW. Specific information about each heat exchanger is located in Appendix C.

v. Storage Tanks

The cost and size of a storage vessel is directly related to the inlet flowrate, and the desired fill time. Our tanks are designed to reach 50% of their maximum volume after 48 hours of continuous production. To calculate the required volume, we simply multiply the hourly inlet flowrate by 96 hrs to acquire the volume at max capacity.

Storage Vessel Sizing									
Storage Vessel	Inlet Flowrate $\left[\frac{m^3}{day}\right]$	Volume [m ³]	Pressure [bar]	Material	Туре	Cost			
Acetonitrile Tank	4.70	18.80	1.0	316SS	Cone Roof	\$13,880			
Toluene Tank	9.84	39.36	1.0	316SS	Cone Roof	\$19,600			
Feed B+C Tank	1.11	29.42	1.0	316SS	Cone Roof	\$17,000			
Feed A Tank	7.36	32.80	1.0	316SS	Cone Roof	\$18,000			
Waste Tank	0.82	4.44	1.0	316SS	Cone Roof	\$7,456			
P-Xylene	8.20	3.28	1.0	316SS	Cone Roof	\$6,620			
Spill Containment	Conditional	59.04	1.0	316SS	Cone Roof	\$23,970			

Table 4-9: Storage Vessels

The final item in Table 4-9 is the spill containment vessel which does not have a set inlet flowrate. This vessel is designed to contain 1.5 time the volume of the largest storage tank to ensure adequate chemical waste storage in the event of equipment failure. Spill containment is discussed in more detail in section 6.

5. Process Economics

i. Delivered Equipment Cos

Each unit in our process is priced based on the EconExpert software package. We use a cost index of 556.7 in this program to ensure that the estimates we gather from EconExpert are appropriate for the current year. EconExpert supplies the total purchased cost as well as two dimensionless factors representing the material and conditions the unit is operating under. We calculate the true cost according to the equation below.

```
[True Cost] = [Base Purchased Cost] * [Material Factor] * [Pressure Factor] [5-1]
```

It is typical for suppliers to provide 'free on board' service to load the equipment for you, excluding the delivery. Design heuristics suggest that the delivered equipment cost should be approximately 10 % greater than the true cost of the product. Table 5-1 below displays the total delivered equipment cost for our process.

De	Delivered Equipment Costs									
Mixer	\$1,700	1.0	1.0	\$170	\$1,900					
ACN Tower	\$8,900	4.0	1.7	\$6,052	\$66,600					
TOL Tower	\$13,300	4.0	1.7	\$9,044	\$99,500					
Reb -1	\$10,800	1.0	1.0	\$1,080	\$11,900					
Cond - 1	\$4,700	1.0	1.0	\$470	\$5,200					
Reb - 2	\$10,800	1.0	1.0	\$1,080	\$11,900					
Cond -2	\$5,600	1.0	1.0	\$560	\$6,200					
Pump 1	\$2,200	1.4	1.0	\$308	\$3,400					
Pump 2	\$2,200	1.0	1.0	\$220	\$2,400					
Vacuum Pump	Costing	Fou	nd ir	n Table 4-1	\$88,900					
Reflux Drum 1	\$3,600	1.0	1.0	\$360	\$4,000					
Reflux Drum 2	\$5,000	1.0	1.0	\$500	\$5,500					
Flash Drum	\$14,600	1.0	1.0	\$1,460	\$16,100					
Heat Exchangers	\$97,100	1.0	1.0	\$9,710	\$106,800					
Acetonitrile Tank	\$13,900	1.0	1.0	\$1,390	\$15,300					

Table 5-1: Total Delivered Equipment Cost

Toluene Tank	\$19,600	1.0	1.0	\$1,960	\$21,600
Feed B+C Tank	\$17,100	1.0	1.0	\$1,710	\$18,800
Feed A Tank	\$18,000	1.0	1.0	\$1,800	\$19,800
Waste Tank	\$7,500	1.0	1.0	\$750	\$8,300
P-Xylene	\$6,600	1.0	1.0	\$660	\$7,300
Spill Containment	\$24,000	1.0	1.0	\$2,400	\$26,400
Backup Pump 1	\$2,200	1.4	1.0	\$308	\$3,400
Backup Pump 2	\$2,200	1.0	1.0	\$220	\$2,400
Bkp Vc Pump	Costing Foun		nd ir	n Table 4-1	\$88,900
				Total Cost	\$532,500

In this table each heat exchanger is combined into a single cost as each exchanger costs exactly the same when sized in EconExpert. A simple summation gives our total delivered equipment cost (DEC). The DEC is an important value for the remaining economic analysis, it is used to determine the necessary investments in terms of fixed capital and operation costs.

I. Fixed Capital Investment

To determine the fixed capital investment (FCI) for our process, we must calculate the direct, indirect, and contracting costs. Each cost in the subsequent table is based off of a percentage of the delivered equipment cost, and is subject to alteration by the engineer in charge of the process, within reason. Certain line items are excluded from our analysis because we are adding on to an existing plant. The land, service facilities, and buildings are already supplied by the company we are working for and therefore can be excluded from our total direct plant cost.

Install Costs							
Direct Production Costs	[%] DEC		Value				
Delivered Equipment Cost		100	\$515,769				
Installation		47	\$242,411				
Piping		66	\$340,407				
Instrumentation and Controls		15	\$77,365				
Electrical		11	\$56,735				
Yard Improvements		5	\$25,788				
	To Dir Pla	tal ect ant Cost	\$1,258,476				
	i						

Indirect Costs	[%] DEC	Value
Engineering Supervision	35	\$180,519
Construction Expenses	45	\$232,096
	Total Indirect	\$412,615
Other	[%] DEC	Value
Contractor's Fee	21	\$108,311
Contingency	42	\$216,623
	Total Other	\$324,934

This table shows the cost of each service/improvement as compared to the DEC. We acquire the [%] DEC values from Peters and Timmerhaus (1981). Finally our FCI is calculated by adding up the Direct, Indirect, and Other costs to yield a value of \$1,996,000.

Table 5-3:	Summary c	of Key	Investment	Figures
1 4010 0 01				

Capital Investment Summary					
DEC	\$515,800				
FCI	\$1,996,000				
WCI	\$443,600				
тсі	\$2,439,600				

Table 5-3 summarizes the delivered equipment costs, fixed capital investment, working capital investment, and total capital investment.

III. Labor

Human labor is essential to the day-to-day operation of the plant, therefore we decided to hire

several at an hourly rate of \$25/hr for a total of 2000 hours/yr. $Labor Cost = \left[2000 \frac{hrs}{worker \cdot year}\right] * [\# Workers] \cdot \left[\frac{\$}{hr}\right] \cdot [1.7] \quad [Eq 5-1]$ In addition to their \$25/hr each worker will receive an additional 70% in benefits leaving us with a total labor cost of \$680,000 annually.

IV. Manufacturing Cost

The manufacturing cost of this process takes into account periodic maintenance, required operating supplies, and laboratory charges. These are considered direct costs in the

manufacturing process but in order to fully estimate the manufacturing cost, one must account for addition fixed costs, general expenses, and the plant overhead fees. The following table summarizes the cost of manufacturing on a yearly basis. All line items are from Peters and Timmerhaus (1991) for fluid processing plants.

Manufacturing Cost						
Direct Costs	[%]	Percentage of	Value			
Maintenance	6	FCI	\$119,700			
Operating Supplies	15	FCI	\$299,400			
Laboratory Charges	15	Operating Labor	\$102,000			
Fixed Charges						
Local Taxes	2.5	FCI	\$49,900			
Insurance	0.7	FCI	\$13,900			
Plant Overhead 55		Labor, Supervision, Maintenance	\$539,100			
General Expenses						
Administrative Costs	15	Labor, Supervision, Maintenance	\$147,000			
Distribution and Selling	15	Manufacturing cost	\$168,600			

Table 5-4: Calculation of Manufacturing Cost

The manufacturing cost of a product plays into the operation cost of the plant and ultimately the rate of return.

V. Rate of Return

The rate of return is based on the after tax cash flow of the process. We determine this cash flow by following a 20 year SOYD depreciation scheme, assuming a salvage value of 0. This analysis also includes a 10% increase in operating cost during the first year to account for startup and any additional costs it may bring with it. The results of this analysis are displayed below.

Table 5-5: Cash Flow Analysis

	20 Year SOYD Cash Flow Analysis								
Yea r	Total Product Cost	Revenue From Sales	Before Tax Cash Flow	SOYD Depreciatio n Value	Taxable Income	Income Taxes	After Tax Cash Flow		
0	-\$2,518,700						-\$2,518,700		

1	\$3,935,900	\$9,679,800	\$5,743,900	\$203,897	\$5,540,003	\$2,216,001	\$3,527,900
2	\$3,578,100	\$9,679,800	\$6,101,700	\$193,702	\$5,907,998	\$2,363,199	\$3,738,500
3	\$3,578,100	\$9,679,800	\$6,101,700	\$183,507	\$5,918,193	\$2,367,277	\$3,734,400
4	\$3,578,100	\$9,679,800	\$6,101,700	\$173,312	\$5,928,388	\$2,371,355	\$3,730,300
5	\$3,578,100	\$9,679,800	\$6,101,700	\$163,117	\$5,938,583	\$2,375,433	\$3,726,300
6	\$3,578,100	\$9,679,800	\$6,101,700	\$152,923	\$5,948,777	\$2,379,511	\$3,722,200
7	\$3,578,100	\$9,679,800	\$6,101,700	\$142,728	\$5,958,972	\$2,383,589	\$3,718,100
8	\$3,578,100	\$9,679,800	\$6,101,700	\$132,533	\$5,969,167	\$2,387,667	\$3,714,000
9	\$3,578,100	\$9,679,800	\$6,101,700	\$122,338	\$5,979,362	\$2,391,745	\$3,710,000
10	\$3,578,100	\$9,679,800	\$6,101,700	\$112,143	\$5,989,557	\$2,395,823	\$3,705,900
11	\$3,578,100	\$9,679,800	\$6,101,700	\$101,948	\$5,999,752	\$2,399,901	\$3,701,800
12	\$3,578,100	\$9,679,800	\$6,101,700	\$91,754	\$6,009,946	\$2,403,979	\$3,697,700
13	\$3,578,100	\$9,679,800	\$6,101,700	\$81,559	\$6,020,141	\$2,408,057	\$3,693,600
14	\$3,578,100	\$9,679,800	\$6,101,700	\$71,364	\$6,030,336	\$2,412,134	\$3,689,600
15	\$3,578,100	\$9,679,800	\$6,101,700	\$61,169	\$6,040,531	\$2,416,212	\$3,685,500
16	\$3,578,100	\$9,679,800	\$6,101,700	\$50,974	\$6,050,726	\$2,420,290	\$3,681,400
17	\$3,578,100	\$9,679,800	\$6,101,700	\$40,779	\$6,060,921	\$2,424,368	\$3,677,300
18	\$3,578,100	\$9,679,800	\$6,101,700	\$30,585	\$6,071,115	\$2,428,446	\$3,673,300
19	\$3,578,100	\$9,679,800	\$6,101,700	\$20,390	\$6,081,310	\$2,432,524	\$3,669,200
20	\$3,578,100	\$10,137,700	\$6,559,600	\$10,195	\$6,549,405	\$2,619,762	\$3,939,800

The after tax cash flow, ATCF, is the most important column for calculating the rate of return on our initial investment. From this cash flow we calculate an annual rate of return of 144%. These values are based off of the 1981 cost index written by Peters and Timmerhaus. Based on this rate of return we can confidently recommend operating this solvent recovery system under the operating specifications displayed in the Equipment Summary.

The success of our process is ultimately dependent on the market price of acetonitrile and toluene. We conduct a sensitivity analysis on the rate of return to examine its behavior as the market varies. The following plot displays the response of the rate of return when the product prices are changed.

Figure 5-1: Sensitivity Analysis on the Rate of Return

According to figure 5-1, our profits are highly dependent on the price of toluene. This plot was generated using Excel and by varying each product price while holding the other constant at the value given in the design specifications.

6. Safety and quality control

The proposed recycle process involves a variety of hazardous materials and operating conditions that must be avoided through the design of a safe plant process. The first things to consider are the hazardous materials used in the process. Acetonitrile, Toluene, and Xylene have flash temperatures of 4.4, 5.5, and 27 $\,^{\circ}C$ respectively. Unfortunately the mixer we use that contains mostly xylene is an open air mixer, and both the Acetonitrile and Toluene storage tanks are open to the atmosphere. We must cool these streams below their flash points before they can be stored or mixed. We consider all possibilities of failure along with the consequence of that failure. Failure Mode and Effects Analysis (FMEA) and Hazard Operability Analysis (HAZOP) are the preferred methods of risk assessment. FMEA is focused on how equipment failure affects the safety of the process and the economic impact. HAZOP is similar to FEMA, but focuses on safety in regards to personnel, the environment, and the safeguards that are necessary in order for the process to run smoothly. We increase the overall safety of the process by compiling widely accepted methods of systematic safety assessment: HAZOP, FMEA, and an inherently safer design checklist.

i. Spill Containment

In the event of spillage, it is important to have a vessel large enough to contain the equivalent volume of the largest tank plus an additional 50% of that value. This ensures that even if our largest tank experiences failure, we will still be able to prevent the effluent fluids from exiting the plant. Our largest storage tank contains the toluene product and is $39 m^3$ leading to a containment vessel with a volume of $59 m^3$. In addition to containing the fluid in the drains, we must absorb the pooling liquids with a porous, inert material such as vermiculite. Above all else, we must be sure that all drainage is clear from all sources of ignition.

ii. Fire Prevention

As mentioned previously Acetonitrile and toluene both have flash points below room temperature. Meaning a rupture in any of the networks containing Toluene or Acetonitrile could be a dangerous situation for surrounding personnel and equipment. The system of controllers explained in the P&ID diagram are the first line of defense, and should be designed to warn operators of data inconsistencies in the system. These inconsistencies could signify a leak or rupture in the system or possibly a hot flammable stream that is not cooled enough. In the case these controllers somehow fail additional passive and active prevention techniques will need to be installed. A passive solution could entail isolating the exits of the flammable streams in the design of the chemical plant from any spark sources. Conventional water spray systems will not extinguish flames made by a low flash point material. Acetonitrile can be extinguished using Bromochlorodifluoromethane (BCF). Acetonitrile can be extinguished by CO₂ portable extinguishers. The implementation of mobile foam monitors around the ACN and Toluene storage tanks as a last line of active fire protection.

iii. Maximum Allowable operating Conditions

The maximum allowable pressure and temperature of each unit are determined using heuristics as guidelines. The maximum allowable pressure is either 1.1 times the operating pressure, or 3.47 bar higher than the operating pressure, whichever gives a higher value. By these guidelines no vessel should exceed 4.5 bars of pressure at any point in our process. Table 6-1: MAWP/MAWT Summary

	Operating Pressure [bar]	MAWP [bar]	MAWT [C]
Mixer	1	4.447	315.6
ACN Tower	0.1	3.547	315.6
TOL Tower	1	4.447	315.6
Reb -1	0.1	3.547	315.6
Cond - 1	0.1	3.547	315.6
Reb - 2	1	4.447	315.6
Cond -2	1	4.447	315.6
Pump 1	0.1	3.547	315.6
Pump 2	0.1	3.547	315.6
Vacuum Pump	0.1	3.547	315.6
Reflux Drum 1	0.1	3.547	315.6
Reflux Drum 2	1	4.447	315.6
Flash Drum	1	4.447	315.6
Heat Exchangers	1	4.447	315.6
Acetonitrile Tank	1	4.447	315.6
Toluene Tank	1	4.447	315.6
Feed B+C Tank	1	4.447	315.6
Feed A Tank	1	4.447	315.6
Waste Tank	1	4.447	315.6
P-Xylene	1	4.447	315.6
Spill Containment	1	4.447	315.6
Backup Pump 1	0.1	3.547	315.6
Backup Pump 2	0.1	3.547	315.6
Bkp Vc Pump	0.1	3.547	315.6

Table 6-1 above displays the maximum limits for each unit. The maximum temperature for each unit is the same because no unit exceed the limit of 315.6 C given by the design heuristic. The MAWP is very important to plant safety. The understanding of this limit helps reduce the chance of explosion due to overpressure.

iv. HAZOP

List of chemicals involved in the proposed process are as follows:

- Acetonitrile (ACN)
- MethylEthylKetone (MEK)
- Siloxane
- Toluene
- Water
- P-Xylene

Potential Hazards:

Three of the main components that are being separated, Toluene, Acetonitrile, and p-Xylene, are exposed to temperatures above their flash points during the recycling process. Separation processes are also innately are run at high temperatures, relative to room temperature, to ensure sharp separations. Two of these components, Toluene and Acetonitrile have flash points of 5 and 4 °C respectively which are well below room temperature.

Analysis Boundaries:

- 1. Incidents that occur during the repair or maintenance process are not included.
- 2. Feeds enter the recycle process directly from the siloxane polymerization plant at a set steady flow rate that is closed from the atmosphere.
- 3. Cooling water and MEK flow rates are driven by gravity, and tuned using a control valve.
- 4. Stead-state operation
- 5. Equipment is well built and use as designed
- 6. Operators are properly trained
- 7. Procedures are clearly written
- 8. Maintenance and inspections are performed routinely

Analysis Results:

Strict enforcement of MSDS approved PPE, proper and relevant operator training as well as an emphasis on workplace safety. Any stream containing a material above its flash point must have temperature sensors as well as a pressure or a flow rate sensor to ensure there is no leak. Streams around heat exchangers should also be equipped with temperature and flow sensors to ensure there is no cross flow and the correct amount of heat is being exchanged. Extensive tables for the HAZOP analysis are located in Appendix –D

v. Personal Protective Equipment

The safety data sheets described above outline the PPE requirements for all personnel who could potentially come in contact with hazardous materials. To ensure proper operator safety we require that gloves, insulated boots, full body suits, and safety glasses must be worn at all times. In the event that an operator must handle the materials directly, they are required to adorn addition protective equipment such as a self-contained respirator or breathing apparatus

Acetonitrile

Acetonitrile is highly flammable in its vapor state, and is flammable under room temperature at atmospheric pressure. Acetonitrile may also cause serious eye and skin irritation as well as toxic effects when inhaled or ingested. The use of personal protective equipment such as safety glasses, breathing apparatus, gloves, and lab coats should be required.

If personnel's eyes come in contact, rinse out eye for at least 15 minutes. If personnel's skin comes in contact with Acetonitrile wash the afflicted area with soap and water for at least 15 minutes. In the case of serious inhalation evacuate the afflicted personnel to a safe area with haste. Loosen any tight clothing collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, preform CPR (WARNING: It may be hazardous to the person providing aid to give mouth-to-mouth resuscitation when the inhaled material is toxic, In this case use a bag valve mask). In case of ingestion do not induce vomiting unless directed to do so by a medical professional. Never give anything by mouth to an unconscious person. Loosen any tight clothing and get medical attention if any symptoms appear.

The storage of acetonitrile must be in a tight ventilated container that is isolated from any heat or spark sources. In case of spill avoid contamination into the environment, and upgrade the level of personal protective equipment to a full body suit, self-contained breathing apparatus, vapor respirator, boots, and gloves. Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Toluene

Toluene is highly flammable as a vapor, hazardous to aquatic life, a skin irritant, can incur serious eye and organ damage, and may cause death if inhaled. Personal protective equipment such as a breathing apparatus, gloves, and eyewear should be required in operations involving toluene.

If skin comes in contact with toluene the MSDS procedure states to wash the affected area with soap and water for at least 20 minutes. If personnel's eyes come in contact, rinse out eye for at least 15 minutes, and seek medical attention immediately. In the case of serious inhalation evacuate the afflicted personnel to a safe area with haste. Loosen any tight clothing collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, preform CPR (WARNING: It may be hazardous to the person providing aid to give mouth-to-mouth resuscitation when the inhaled material is toxic, In this case use a bag valve mask). In case of ingestion do not induce vomiting unless directed to do so by a medical professional. Never give anything by mouth to an unconscious person. Loosen any tight clothing and get medical attention if any symptoms appear.

Toluene needs to be stored in a sealed, well ventilated storage vessel that is isolated from any ignition sources. Drains and surface water must be protected from potential spills to avoid contamination. In case of spill avoid contamination into the environment, and upgrade the level of personal protective equipment to a full body suit, self-contained breathing apparatus, vapor respirator, boots, and gloves. Non sparking materials must be used in the cleanup of toluene. Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of

vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

P-Xylene

The MSDS lists p-xylene as a flammable liquid and vapor, hazardous to aquatic life, and harmful when in contact with skin and eyes, and has a toxicity when inhaled or ingested. In case of contact with eyes flush with plenty of water for at least 15 minutes and seek medical attention if serious irritation persists. In the case of skin contact flush the afflicted area with an excess of water. Cover skin with an emollient, and remove any contaminated clothing and shoes. Thoroughly wash clothing and shoes before reuse. In the case of serious inhalation evacuate the afflicted personnel to a safe area with haste. Loosen any tight clothing collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, preform CPR (WARNING: It may be hazardous to the person providing aid to give mouth-to-mouth resuscitation when the inhaled material is toxic, In this case use a bag valve mask). In case of ingestion do not induce vomiting unless directed to do so by a medical professional. Never give anything by mouth to an unconscious person. Loosen any tight clothing and get medical attention if any symptoms appear.

P-Xylene should be stored in a sealed, well ventilated storage vessel that is isolated from any ignition sources. Drains and surface water must be protected from potential spills to avoid contamination. In case of spill avoid contamination into the environment, and upgrade the level of personal protective equipment to a full body suit, self-contained breathing apparatus, vapor respirator, boots, and gloves. Non sparking materials must be used in the cleanup of p-xylene. Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location

7. Conclusion

The recovery of solvents, toluene and acetonitrile, from a polymerization plant is best carried out using two distillation towers and one flash drum. Our process utilizes the packed columns to separate out the solvents independently while the flash drum separates the waste from recycled separating agent. The results from or HAZOP and FMEA analyses allow us to confidently present a safe design for the solvent recovery. Not only is our process efficient, it also generates a large savings value.

Our process generates a 144% rate of return on a total investment of \$2.52 million with an annual after tax cash flow of approximately \$3.7 million. Sensitivity analysis on the rate of return determined that our process will remain profitable as long as the pure component prices remain above \$1 per kilogram. If further adjustments were to be made to our design, we would recommend integration of the column one feed into our heat exchanger network.

Thank you for the opportunity to work on this design project, feel free to contact us with any question or concerns you may have.
Appendix A: Stream Tables

i. Table A-1 – Stream Table Part 1

	ACN-PROD	BOT-1	BOT-1H	BOT-1P	BOT-2	CW-C2	CW-C4	CW-H2
From		P-1	2-Sep	E-4B	FLASH-1	E2-A	E4	
То	E1	1-Sep	E-4B	P-1	2-Sep			E2-A
Substream: MIXED								
Mass Flow kg/hr								
ACN	157.9412	0.2587969	0.2587969	0.2587969	1.62E-11	0		
TOLUENE	0.1883581	97.32374	97.32374	97.32374	0.744797	0		
P-XYLENE	0.0704428	99.92956	99.92956	99.92956	99.91296	0	0	0
WATER	0	0	0	0	0	940.7379	0	0
MEK	0	0	0	0	0	0	0	0
SILOXANE	3.22E-22	15.70086	15.70086	15.70086	19.75072	0	42.05953	940.7379
Mass Frac							0	0
ACN	0.9983641	1.21E-03	1.21E-03	1.21E-03	1.34E-13	0	0	0
TOLUENE	1.19E-03	0.4564626	0.4564626	0.4564626	6.19E-03	0		
P-XYLENE	4.45E-04	0.4686843	0.4686843	0.4686843	0.829784	0	0	0
WATER	0	0	0	0	0	1	0	0
MEK	0	0	0	0	0	0	0	0
SILOXANE	2.03E-24	0.0736393	0.0736393	0.0736393	0.164031	0	1	1
Total Flow kg/hr	158.2	213.213	213.213	213.213	120.4085	940.7379	0	0
Vapor Frac	0	0	0	0	0	0	0	0
Liquid Frac	1	1	1	1	1	1	42.05953	940.7379
Solid Frac	0	0	0	0	0	0	0	0
Temperature C	5	53.87832	63.90875	53.90486	138.2141	35	1	1
Pressure bar	1	0.1	1	1	1	1	0	0
Enthalpy Btu/lb	311.0895	-53.86925	-45.97711	-53.81416	-112.976	-6802.71	35	45.00039

ii. Table A-2 – Stream Table Part 2

	CW-H4	DIST-1	DIST-1P	DIST-2	FEED-1	FEED-2A	FEED2A-C	FEED2A-H	WASTE-H3
From		PUMP2	E1	E3-A	1-Sep	2-Sep	E3-A	E4-A	E4
То	E4	1-Sep	PUMP2	2-Sep		E4-A		E3-A	E-4B
Substream: MIXED									
Mass Flow kg/hr									
ACN									
TOLUENE									
P-XYLENE	0	157.9412	157.9412	0.261136	158.2	0	0	0	7.77E-13
WATER	0	0.188358	0.188358	362.5272	96.9	265.95	265.95	265.95	0.132707
МЕК	0	0.070443	0.070443	0.0117	0	0	0	0	29.53713
SILOXANE	42.05953	0	0	0	0	0	0	0	0
Mass Frac	0	0	0	0	0	0	0	0	0
ACN	0	3.22E-22	3.22E-22	2.29E-06	4.9	4.05	4.05	4.05	8.949852
TOLUENE									
P-XYLENE	0	0.998364	0.998364	7.20E-04	0.608462	0	0	0	2.01E-14
WATER	0	1.19E-03	1.19E-03	0.999248	0.372692	0.985	0.985	0.985	3.44E-03
MEK	0	4.45E-04	4.45E-04	3.22E-05	0	0	0	0	0.764821
SILOXANE	1	0	0	0	0	0	0	0	0
Total Flow kg/hr	0	0	0	0	0	0	0	0	0
Vapor Frac	0	2.03E-24	2.03E-24	6.31E-09	0.018846	0.015	0.015	0.015	0.231743
Liquid Frac	42.05953	158.2	158.2	362.8	260	270	270	270	38.61969
Solid Frac	0	0	0	0	0	0	0	0	0
Temperature C	1	1	1	1	1	1	1	1	1
Pressure bar	0	0	0	0	0	0	0	0	0
Enthalpy Btu/lb	44.99976	21.39113	21.54418	109.8909	20	100	20	97.96897	70.64693
Entropy Btu/lb-R	1	0.1	1	1	1	1	1	1	0.955735
Average MW	-6784.8	325.2858	325.4519	125.445	207.1597	104.378	41.38287	102.6347	-214.947

iii. Table A-3 – Stream Table Part 3

	H-WASTE1	H-WASTE2	H-WASTE4	MAKEUP	MEK-IN1	MEK-IN2	MEK-IN4	MEK-OUT1	XYL-RCY
From	E4-A	E-4B	E4-D	Mixer	E1	E2-B	E4-D		1-Sep
То	FLASH-1	E4-A	E4					E1	MIX-RCYC
Substream: MIXED									
Mass Flow kg/hr									
ACN									
TOLUENE									
P-XYLENE	7.77E-13	7.77E-13	7.77E-13	0	0	0	0	0	1.54E-11
WATER	0.132707	0.132707	0.132707	0	0	0	0	0	0.61209
MEK	29.53713	29.53713	29.53713	29.62417	0	0	0	0	100
SILOXANE	0	0	0	0	0	0	0	0	0
Mass Frac	0	0	0	0	280	330	1689.806	280	0
ACN	8.949852	8.949852	8.949852	0	0	0	0	0	10.80086
TOLUENE									
P-XYLENE	2.01E-14	2.01E-14	2.01E-14	0	0	0	0	0	1.38E-13
WATER	3.44E-03	3.44E-03	3.44E-03	0	0	0	0	0	5.49E-03
MEK	0.764821	0.764821	0.764821	1	0	0	0	0	0.897562
SILOXANE	0	0	0	0	0	0	0	0	0
Total Flow kg/hr	0	0	0	0	1	1	1	1	0
Vapor Frac	0.231743	0.231743	0.231743	0	0	0	0	0	0.096944
Liquid Frac	38.61969	38.61969	38.61969	29.62417	280	330	1689.806	280	111.413
Solid Frac	0	0	0	0	0	0	0	0	0
Temperature C	1	1	1	1	1	1	1	1	1
Pressure bar	0	0	0	0	0	0	0	0	0
Enthalpy Btu/lb	137	123.0842	45	20	-29	-29	-29	-19.2409	25.11668
Entropy Btu/lb-R	0.955735	0.955735	0.955735	1	1	1	1	1	1
Average MW	-159.492	-171.68	-234.447	-102.209	-1677.49	-1677.49	-1677.49	-1669.38	-160.735

	MEK-OUT2	MEK-OUT3	MEK-OUT4	RECYC-1	RECYC-2	RECYC-3	TOL-HOT	TOL-PROD
From			E3-B	E2-A	E2-B	Mixer	E3-B	
То	E2-B	E3-B	E4-D	FLASH-1	E2-A	E2-B	E3-A	E3-B
Substream: MIXED								
Mass Flow kg/hr								
ACN								
TOLUENE								
P-XYLENE	0	0	0	1.54E-11	1.54E-11	1.54E-11	0.26113	0.26113
WATER	0	0	0	0.61209	0.61209	0.61209	362.527	362.527
MEK	0	0	0	70.37583	70.37583	70.37583	0.0117	0.0117
SILOXANE	0	0	0	0	0	0	0	0
Mass Frac	330	1689.806	1689.806	0	0	0	0	0
ACN	0	0	0	10.80086	10.80086	10.80086	2.29E-06	2.29E-06
TOLUENE								
P-XYLENE	0	0	0	1.88E-13	1.88E-13	1.88E-13	7.20E-04	7.20E-04
WATER	0	0	0	7.48E-03	7.48E-03	7.48E-03	0.999248	0.999248
MEK	0	0	0	0.860458	0.860458	0.860458	3.22E-05	3.22E-05
SILOXANE	0	0	0	0	0	0	0	0
Total Flow kg/hr	1	1	1	0	0	0	0	0
Vapor Frac	0	0	0	0.132058	0.132058	0.132058	6.31E-09	6.31E-09
Liquid Frac	330	1689.806	1689.806	81.78879	81.78879	81.78879	362.8	362.8
Solid Frac	0	0	0	1	0	0	0	0
Temperature C	1	1	1	0	1	1	1	1
Pressure bar	0	0	0	0	0	0	0	0
Enthalpy Btu/lb	-25.0352	-18.993	-28.6394	137	45	27	55	4
Entropy Btu/lb-R	1	1	1	0.955735	0.955735	0.955735	1	1
Average MW	-1674.21	-1669.17	-1677.19	37.27103	-168.686	-181.933	79.86073	42.48466

Appendix B: Main Process Flowsheet

Figure B-1: Main process flow sheet as generated by ASPEN Plus V8.8

Appendix C: Equipment Summary

I. Distillation Column Summary

RADFRAC	Specificati	ons			
Specifications	Acetonitril	e Tower	Toluen	e Tower	
Bot. Temperature [°C]		52.88	137.		
Top Temperature [°C]		21.30		109.9	
Pressure [bar]		0.10		1	
Diameter [m]		0.77		0.617	
Height [m]		2.39		4.56	
Pack Height [m]		1.84		4.37	
# of Trays		23		21	
# Stages		23		23	
Feed-1		22	Feed A	8	
Feed-2	XYLRCY	8	Bot-1	15	
Orientation	Verti	cal	Ver	tical	
Structured Packing Type	CY by S	Sulzer	700Y F	700Y FlexiPac	
HETP [m]	0.0	8	0.191		
Material	STANE	DARD	STANDARD		
Total Cost [\$]		\$66,467	\$99,357		
Distillate Stream Compositions	Species	wt. Frac	Species	wt. Frac	
	ACN	0.99836	ACN	0.00072	
	TOLUEN E	0.00119	TOLUEN E	0.99925	
	P- XYLENE	0.00045	P- XYLENE	0.00003	
	SILOXAN E	trace- 	SILOXAN E	trace	
Bottoms Stream Compositions	Species	wt. Frac	Species	wt. Frac	
	ACN		ACN	trace	
	TOLUEN E	0.00121	TOLUEN E	0.00619	
	P- XYLENE	0.45646	P- XYLENE	0.82978	
	SILOXAN E	0.07364	SILOXAN E	0.16403	

Table C-1: RADFRAC Column Design Summary

II. Reflux Drum Summary

Reflux Drum Sizing							
Specification	Drum 1	Drum 2					
Diameter [m]	0.320	0.486					
Length[m]	0.959	1.459					
Volume [m^3]	0.2408	0.557					
Flow Rate [l/min]	3.34	7.73					
Holding Time [min]	8	8					
Reflux Ratio	3.5	3.5					
Liquid Space [%]	50	50					
Cost [\$]	\$4,251.00	\$6,992.00					
Material	Carbon Steel	Carbon Steel					

Table C-2: Reflux Drums

III. Pump Summary

Table C-3: Pumps

Pump Operation and Cost								
Specification	Pump 1	Pump 2	Vacuum					
Туре	Rotary	Rotary	Liquid Ring					
Power [kW]	0.008	0.005	20.4					
Flowrate [l/min]	0.257	0.2004	0.306					
Differential Head [m]	11.10	11.64						
Pressure in [bar]	0.10	0.1	1.00					
Pressure out [bar]	1.00	1.00	0.10					
Cost [\$]	\$8,880	\$8,880	\$33,883					
Material	Carbon Steel	Carbon Steel	Stainless Steel					

IV. Flash Drum Summary

Drum Separator Summary							
Specifications	Flash	Drum					
Temperature [°C]		138.00					
Pressure [bar]		1.00					
Diameter [m]		0.15					
Height[m]		0.48					
Volume [m^3]		0.01					
Heat Duty [kW]		7.77					
Туре	Vei	tical					
Material	316SS						
Cost	\$14,581						
	Component	Wt. Fraction					
	Acetonitrile	-trace-					
	Toluene	0.007					
Vapor Stream Compositions	p-Xylene	0.861					
	Water	0					
	Siloxane	0.131					
	Acetonitrile	-trace-					
	Toluene	0.003					
Liquid Stream Compositions	p-Xylene	0.765					
	Water	0					
	Siloxane	0.245					

V. Storage Vessels

Table C-5	Storage	Tank	Sizing
-----------	---------	------	--------

Storage Vessel Sizing									
Storage Vessel	Volume [m ³]	Pressure [bar]	Material	Туре	Cost				
Acetonitrile Tank	18.80	1.0	316SS	Cone Roof	\$13,880				
Toluene Tank	39.36	1.0	316SS	Cone Roof	\$19,630				
Feed B+C Tank	29.42	1.0	316SS	Cone Roof	\$17,090				
Feed A Tank	32.80	1.0	316SS	Cone Roof	\$18,000				

Waste Tank	4.44	1.0	316SS	Cone Roof	\$7,456
P-Xylene	3.28	1.0	316SS	Cone Roof	\$6,623
Spill Containment	59.04	1.0	316SS	Cone Roof	\$23,972

VI. Heat Exchanger Summary Part 1: E1 - E3,B

Table C-6: Summary of the first 5 heat exchangers in our process

Heat Exchanger Summary													
Block ID	E1	E2-A	E2-B	E3-A	E3-B								
Specification													
Heat duty [kW]	1.459	10.88	0.7	10.684	8.76								
Actual exchanger area [sqm]	0.046	0.207	0.013	0.575	0.204								
Minimum temperature approach [°C]	10.0	10.0	10.0	10.0	10.0								
Туре	S&T	S&T	S&T	S&T	S&T								
Flow Pattern	C-C	C-C	C-C	C-C	C-C								
Hot Stream ID	ACN	XYL-RCY	XYL-RCY	TOL	TOL								
Cooling Stream	MEK	CW	MEK	FEED-2A	MEK								
Inlet hot stream temperature [°C]	21.54	137.00	45.00	109.22	55.00								
Inlet hot stream pressure [bar]	1.00	0.96	0.96	1.00	1.00								
Outlet hot stream temperature [°C]	5.00	45.00	27.00	55.00	4.00								
Outlet hot stream pressure [bar]	1.00	0.96	0.96	1.00	1.00								
Inlet cold stream temperature [°C]	-29.00	35.00	-29.00	20.00	-28.64								
Inlet cold stream pressure [bar]	1.00	1.00	1.00	1.00	1.00								
Outlet cold stream temperature [°C]	-19.25	45.00	-25.04	97.06	-18.99								
Outlet cold stream pressure [bar]	1.00	1.00	1.00	1.00	1.00								
Cost	\$10,793	\$10,793	\$10,793	\$10,793	\$10,793								

VII: Heat Exchanger Summary: E4,A-D

	Table (C-7:	Summary	of the	final 4	heat	exchance	jers
--	---------	------	---------	--------	---------	------	----------	------

Heat Exchanger Summary												
Block ID	E4-A	E4-B	E4-C	E4-D								
Specification												
Heat duty [kW]	.4857	.304	8.76	.3251								
Actual exchanger area [sqm]	0.029	0.019	0.049	0.006								
Minimum temperature approach [°C]	10.0	10.0	10.0	10.0								
Туре	S&T	S&T	S&T	S&T								

Flow Pattern	C-C	C-C	C-C	C-C	
Hot Stream ID	WASTE	WASTE	WASTE	WASTE	
Cooling Stream	FEED-2A	BOT-1	CW	MEK	
Inlet hot stream temperature [°C]	63.18	137.00	116.76	45.00	
Inlet hot stream pressure [bar]	0.96	0.96	0.96	0.96	
Outlet hot stream temperature [°C]	45.00	116.76	63.18	27.00	
Outlet hot stream pressure [bar]	0.96	0.96	0.96	0.96	
Inlet cold stream temperature [°C]	35.00	97.06	52.91	-29.00	
Inlet cold stream pressure [bar]	1.00	1.00	1.00	1.00	
Outlet cold stream temperature [°C]	45.00	100.00	62.91	-28.64	
Outlet cold stream pressure [bar]	1.00	1.00	1.00	1.00	
Cost	\$10,790	\$10,790	\$10,790	\$10,790	

VIII: Mixer Summary

Table C-8: Mixer Sizing

	Mixer 1												
Specification	Unstir	red, Motionle	ess Mixer										
Hold Time [min]		5											
Volume [m3]		0.0142											
Diameter [m]	0.0399												
	<u>Makeup In</u>	<u>Recycle In</u>	Recycle Out										
Pressure [bar]	1	0.98	1										
Temperature [°C]	20	27	25.11										
Mass Flow [kg/hr]	29.6	81.75	111.4										
Cost [\$]		\$1,785.00)										
Material		Carbon Ste	el										

IX: Condenser and Reboiler Summary

Table C-9: Condenser and Reboilers

Specifications	R1		R2		C1		C2			
Area [m ²]		3.8891		5.323		4.16	2.79			
Duty [kW]		185.05		169.8		-160.2	-165			
Туре	ke	ettle	k	ettle	kettle	;	kettle			
	SEP-1 Bottoms	Low Pressure Steam	SEP-2 Bottoms	High Pressure Steam	SEP-1 Distillate	MEK	SEP-2 Distillate	Cooling Water		
Pressure in [bar]	0.10	1.72	1.00	10.33	0.10	1.00	1.00	1.00		
Pressure out [bar]]	0.10	1.72	1.00	10.33	0.10	1.00	1.00	100		
Temperature in [°C]	56	115.6	137.7	181.4	21.4	21.4 -29		35		
Temperature Out [°C]	51.6952	115.56	137.9	172.4	21.39	11.34	102	99.65		
Vapor Fraction In	0	1	0	1	1	0	1	0		
Vapor Fraction Out	0.774	1	0.783	1	0	0	0	0.074		
Flow rate [kg/hr]	2160.5	1000	2339	13500	711.9	71 90	1632.6	14350		

		Delivered Equip	oment Costs		
	Base Cost	Material Factor	Pressure Factor	Delivery Fee	True Cost
Mixer	\$1,732	1.0	1.0	\$173	\$1,905
ACN Tower	\$8,886	4.0	1.7	\$6,042	\$66,467
TOL Tower	\$13,283	4.0	1.7	\$9,032	\$99,357
Reb -1	\$10,793	1.0	1.0	\$1,079	\$11,872
Cond - 1	\$4,658	1.0	1.0	\$466	\$5,124
Reb - 2	\$10,793	1.0	1.0	\$1,079	\$11,872
Cond -2	\$5,551	1.0	1.0	\$555	\$6,106
Pump 1	\$2,222	1.4	1.0	\$311	\$3,422
Pump 2	\$2,222	1.0	1.0	\$222	\$2,444
Vacuum Pump	\$16,212	1.9	1.0	\$3,080	\$33,883
Reflux Drum 1	\$3,581	1.0	1.0	\$358	\$3,939
Reflux Drum 2	\$4,971	1.0	1.0	\$497	\$5,468
Flash Drum	\$14,581	1.0	1.0	\$1,458	\$16,039
Heat Exchangers	\$97,137	1.0	1.0	\$9,714	\$106,851
Acetonitrile Tank	\$13,880	1.0	1.0	\$1,388	\$15,268
Toluene Tank	\$19,631	1.0	1.0	\$1,963	\$21,594
Feed B+C Tank	\$17,093	1.0	1.0	\$1,709	\$18,802
Feed A Tank	\$17,999	1.0	1.0	\$1,800	\$19,799
Waste Tank	\$7,456	1.0	1.0	\$746	\$8,202
P-Xylene	\$6,623	1.0	1.0	\$662	\$7,285
Spill Containment	\$23,972	1.0	1.0	\$2,397	\$26,369
Backup Pump 1	\$2,222	1.4	1.0	\$311	\$3,422
Backup Pump 2	\$2,222	1.0	1.0	\$222	\$2,444
Bkp Vc Pump	\$16,212	1.9	1.0	\$3,080	\$33,883
				Total Cost	\$531,819

Table C-10: Equipment Cost Summary

*Delivery Costs assumed to be ~10% of base cost

Appendix D: FMEA Summary

i. FMEA Definitions

The subsequent pages outline the results of our Failure Mode and Effects Analysis. The tables below define the rank ordered severity, occurrence, and detection parameters.

		SEVERITY
Rank	Effect rate	Criteria
10	Hazardous- without warning	Very high severity ranking when a potential failure mode affects personal safety, safe item operation and/or involves non-compliance with government regulation without warning
9	Hazardous- with warning	Very high severity ranking when a potential failure mode affects safe item operation and/or involves non-compliance with government regulation with warning
8	Very High	Item inoperable, with loss of primary function.
7	High	Item operable, but at reduced level of performance. Customer dissatisfied.
6	Moderate	Item operable, but Comfort/ Convenience item(s) inoperable. Customer experiences discomfort.
5	Low	Item operable, but Comfort/ convenience item(s) operable at reduced level of performance. Customer experiences some dissatisfaction.
4	Very low	Fit & finish/Squeak & Rattle item does not conform. Defect noticed by average customers.
3	Minor	Fit & finish/Squeak & Rattle item does not conform. Defect noticed by most customers.
2	Very minor	Fit & finish/Squeak & Rattle item does not conform. Defect noticed by discriminating customers.
1	None	No effect.

OCCURRENCE

Rank	CPK	Failure Rate	Criteria
10	<u><</u> 0.33	< 1 in 2	Very High:
9	<u>></u> 0.33	1 in 3	Failure almost inevitable
8	<u>></u> 0.51	1 in 8	High:
7	<u>></u> 0.67	1 in 20	Repeated failures
6	<u>></u> 0.83	1 in 80	Moderate:
5	<u>></u> 1.00	1 in 400	Occasional failures
4	<u>></u> 1.17	1 in 2000	
3	<u>></u> 1.33	1 in 15 000	Low:
2	<u>></u> 1.50	1 in 150 000	Relatively few failures
1	<u>></u> 1.67	<u><</u> 1 in 1 500 000	Remote: Failure is unlikely

		DETECTION
Rank	Detection rate	Criteria
10	Absolute uncertainty	Design Control will not and/or cannot detect a potential cause/ mechanism and subsequent failure mode; or there is no Design Control.
9	Very remote	Very Remote chance the Design Control will detect a potential cause/mechanism and subsequent failure mode.
8	Remote	Remote chance the Design Control will detect a potential cause/ mechanism and subsequent failure mode.
7	Very low	Very Low chance the Design Control will detect a potential cause/ mechanism and subsequent failure mode.
6	Low	Low chance the Design Control will detect a potential cause/mechanism and subsequent failure mode.
5	Moderate	Moderate chance the Design Control will detect a potential cause/mechanism and subsequent failure mode.
4	Moderately high	Moderately High chance the Design Control will detect a potential cause/mechanism and subsequent failure mode.
3	High	High chance the Design Control will detect a potential cause/mechanism and subsequent failure mode.
2	Very high	Very High chance the Design Control will detect a potential cause/mechanism and subsequent failure mode.
1	Almost certain	Design Controls will almost certainly detect a potential cause/mechanism and subsequent failure mode.

ii. FMEA Tables

Table D.1: FMEA of RADFRAC Column and Pump

Subsy stem	FUNCTI ON	POTEN TIAL	POTEN TIAL	POTEN TIAL	DETEC TION	SE V	0 CC	D ET	RP N	Recomm ended	Responsi bility	SE V	0 CC	D ET	RP N
No.		FAILUR	CAUSE	EFFEC	METHO					Action(s)	Completi				
		E	S	TS	D						on date				
		MODE													
RADFr	Separat	Stage	Too	Separati	bottoms	8	1	1	8						0
ac	or	Drying	much	on will	flow rate										
Column		up	heat/Lo	be off	sensor										
			w liquid	specific	and										
			flow	ation.	feed										
			rate	Most	flow rate										
				material	sensor										
				in											
				distillate											
		Foamin	Vapor	Hinder	Distillate	5	2	1	10						0
		g	Flow	vapor	flow rate										
			rate to	flow	sensor										
			large	rate,	and										
				and will	feed										
				possibly	flow rate										
				lead to	sensor										
				flooding											
		Stage	Too	Separati	Distillate	8	1	1	8						0
		Floodin	little	on is off	flow rate										
		g	heat/Lo	specific	sensor										
		_	w vapor	ation.	and										
			Flow	Most	feed										
			rate	material	flow rate										
				in	sensor										
				bottoms											

Pump	Vacuum	Jam closed	Solid particul ate blocking pump	No flow/red uced flow out of pump. Incorrec t operatin g pressur e	Flow rate sensor at pump exit to detect decreas e in flow rate	10	1	1	10			0
	Compre	Motor	Mechan	Separati	Flow	8	7.5	1	60			0
	ssor	Fails	ical malfunc	on is off	rate							
		running	tion	ation,	at pump							
		5		and	exit							
				producti								
				on will								
				stopped								
		Electric	Equipm	Separati	Flow	8	2	1	16			0
		al	ent	on is off	rate							
		contacts	Malfunc	specific	sensor							
		tail to	tion	ation	at pump							
		start			exit							

Subsy	FUNC	POTEN	POTENT	POTENTI	DETEC	S	0	D	R	Recomm	Respons	S	0	D	R
stem	TION	TIAL	IAL	AL	TION	Ε	С	ET	Ρ	ended	ibility	Е	С	ET	Ρ
No.		FAILUR	CAUSES	EFFECTS	METHO	V	С		Ν	Action(s)	Completi	V	С		Ν
		E			D						on date				
		MODE													
Flash	Single	Floodin	Inlet	Reverse	flow	8	1	1	8						0
Drum	stage	g	temperat	Flow	rate										
	separa	-	ure too		sensor										
	tion		low/pres		on inlet										
			sure to		stream										
			high, or												
			flow rate												
			is too												
			large												
		drying	Inlet	No liquid	flow	8	1	1	8						0
		up	Tempera	flow.	rate										
			ture too	Which	sensor										
			high/pre	would	on										
			ssure	result in	liquid										
			too low,	incorrect	exit										
			or flow	recycle	stream										
			rate is	concentr											
			too low	ations											
Shell	Coolin	Outlet	incorrec	Material	Temper	10	1	1	10	yearly					0
and	g	temper	t flow	may be	ature					maintena					
Tube		ature	rates/fou	above	sensor					nce to					
Heat		too	ling	flash	on hot					reduce					
Excha		high		point	stream					risk of					
nger					exit			_		fouling					
		Tube	Leak/Ru	Contamin	Temper	8	8	3	19	flow		8	8	1	64
		failure	pture	ation of	ature				2	sensor					
				streams	sensors					on inlet					
					on inlet					and exit					
										stream					

Table D.2: FMEA of Flash Drum, Shell and Tube Heat Exchanger, and Piping

					and avit							
					and exit							
					streams							
Piping	Piping	leak	wear	possible	Operato	10	1	6	60			
	Joint		and tear	health	r							
				effects	awaren							
				and the	ess							
				small								
				possibilit								
				y that a								
				material								
				will be								
				released								
				from a								
				stream								
				with low								
				pressure								
				and high								
				temperat								
				ure that								
				will be								
				well								
				above								
				the flash								
				point and								
				i								

Table D.3: FMEA for Mixer, Processing and Intermediate Units, Operator, and Control System/Process Automation

Subsys	FUNCTI	POTEN	POTEN	POTEN	DETECTI	S	0	D	R	Recomm	Respons	S	0	D	R
tem No.	ON	TIAL	TIAL	TIAL	ON	Ε	С	Ε	Ρ	ended	ibility	Е	С	Ε	Ρ
		FAILU	CAUSE	EFFEC	METHOD	V	С	Т	Ν	Action(s)	Completi	V	С	Т	Ν
		RE	S	TS							on date				
		MODE													

Mixer	Contain ment	Overflo w	Inlet flow rate too large, or exit flow rate is too low	could lead to spills, and potenti al health effects to anyone in proximi ty with the mixer	Liquid level sensor	9	1	1	9	Include a spill/over flow tank with a fail open switch				0
Proces sing and Interme diate Units	Power	Power failure for more than 20 minute s	Blacko ut, Electri cal issues, etc	Plant inopera ble	Operator awarenes s	8	10	1	80					0
Operat or	Unit Operatio n and Maintena nce	Proced ural Violati on	Human error	Serious injury	Operator awarenes s	10	1	1	10					0
Control System and Proces s Automa tion	Thermoc ouple	Equip ment malfun ction	wear and tear	Incorre ct input into controll loop, which could result in the	automate d comparis on with thermoco uples downstre am and comparis	10	8	2	16 0	include thermoc ouples inside vessels that are hazardou s as well	8	6	2	96

			system being off specific ation	on to literature values					at at the inlet/exit			
Generic Control Loop	Compu ter error	Power surge	System off spec possibl e safety hazards	Thermoc ouples at points of potential hazards	10	6	1	60				0

Subsy	FUNCT	POTENTI	POTEN	POTEN	DETECT	S	0	D	R	Recomm	Respons	S	0	D	R
stem	ION	AL	TIAL	TIAL	ION	Ε	С	Е	Ρ	ended	ibility	Е	С	Ε	Ρ
No.		FAILURE	CAUSE	EFFECT	METHO	V	С	Т	Ν	Action(s)	Completi	V	С	Т	Ν
		MODE	S	S	D						on date				
Contro	Differe	Malfuncti	wear	Separati	Check	8	10	1	80						0
1	ntial	oning	and tear	on will	during										
Syste	Pressu	part		be off	startup.										
m and	re	_		specific	lf no										
Proces	Sensor			ation	change										
S					in										
Autom					Pressur										
ation					e there's										
					а										
					problem										
	Differe	Malfuncti	Blocked	Overflo	Increme	4	10	2	80						0
	ntial	oning.	entranc	w	ntally										
	Pressu	Incorrect	e/exit of		drain										
	re	level	sensor.		storage										
	Transd	recorded	Electric		tanks to										
	ucer		al		determi										
	(Level		issues.		ne flow										
	Sensor		Incorre		rate,										
)		ct		pressur										
			connect		e, then										
			ion etc		ultimate										
					ly										
					Height										
					of fluid.										
					Could										
					be										
					Automat										
					ed										

Table D.4: FMEA for Control Systems and Process Automation Continued

Contro	fail	Comput	Separati	Flow	8	6	1	48			0
I Valve	open/clos	er/logic	on off	rate							
	е	controll	specific	sensor							
		er	ation.	at inlet							
		malfunc	Loss of	and exit							
		tion.	material	of valve							
				to							
				ensure							
				the							
				valve							
				position							
				corresp							
				onds to							
				measur							
				ed							
				values							

Appendix E: HAZOP Summary

i. Determination of risk hierarchy

Qualitative Method		Risk Matri	x Example)	Quantitative Method
Frequency Categories	Death, Equipment or Facility Loss (Hazard Severity 1)	Severe Injury, Major Facility Damage (Hazard Severity 2)	Injury, Illness, Minor Equipment or Facility Damage (Hazard Severity 3)	Minor Injury or Minor Equipment Damage (Hazard Severity 4)	Probability of Incident per hour or per operation
A Frequent	Risk Level I	Risk Level I	Risk Level I	Risk Level III	Greater than 1E-3 /hr or /op
B Probable	Risk Level I	Risk Level I	Risk Level II	Risk Level III	Greater than 1E-4 or equal to 1E- 3/hr or /op
C Occasional	Risk Level I	Risk Level II	Risk Level II	Risk Level IV	Greater than 1E-5 or equal to 1E-4 /hr or /op
D Remote	Risk Level II	Risk Level II	Risk Level IV	Risk Level IV	Greater than 1E-6 or equal to 1E-5 /hr or /op
E Improbable	Risk Level IV	Risk Level IV	Risk Level IV	Risk Level IV	Less than or equal to 1E-6 /hr or /op

Figure E-1: Risk Matrix Used in HAZOP Analysis

	Potential Hazards, Conseq	uences, and Prevention Techniques	
Potential Hazard	Consequence	Prevention Tactic	Action Taken
Components exposed to	Serious Injury or possibly death.	Implement a Control loop equipped	Include an intrinsic fire alarm system.
temperatures above flash	Possible damage to surrounding	with thermocouples at cooler exits	
temperature	equipment	and at the entrances to the mixer and	
		storage tanks.	
Operator skin contact or	Health issues of worker and	Minimize open containers, and	Require personnel to wear light PPE
inhalation of hazardous	possible liability.	conduct routine equipment checks	inside the plant. Isolate the mixer and
components		for leaks, ruptures, etc.	storage tanks to minimize contact, and
			post pertinent MSDS around
			equipment.
Low and high pressure steam	Can cause serious injury	Include caution signs and railing	Require PPE around plant
		around equipment using steam.	
		Practice good	
Operator in contact with MEK	Will cause injury if in contact with	In the design of the plant limit piping	Include MSDS, caution signs, and
	skin	exposure of MEK	conduct routine maintenance on pipes
			and storage containers that include
			MEK.
Toluene, ACN, and Xylene vapor	All three components have	Components are cooled to avoid	Emphasis on daily safety checks, and
release	environmental impacts and are	flash. This also decreases volatility	in leak prevention specifically
	volatile liquids at room		
	temperature		

Table E-1: Potential Hazards

ii. Key Tables

Nam	Guide	Parameter	Potential	Effect	Safeguard				Actions/Comment
e	word		Hazard			<u>Consequenc</u>	Frequency	<u>Risk</u>	<u>s</u>
						<u>e</u>			
Feed-	Low	Flow	No	Products off	Flow sensor	3	1	IV	Don't need the flow
1			immediat	specification.	at entrance				sensor, however it
			e hazard	Incorrect	to column				will be useful for
				temperatures and					detecting if the feed
				pressures will					is off specification
				result through the					
				system due to					
				Heat					
				exchanger/pump					
				sizing					
	High	Flow	none	Separation off	Differential	3	1	IV	
				specification. High	pressure				
				distillate flow in	sensor at				
				first column.	entrance to				
					column 1				
					with control				
					valve				
	No	Flow	none	No product being	Differential	2	2	IV	Not hazardous, but
				made	pressure				costly and will halt
					sensor at				production for a
					entrance to				variety of time,
					column 1				depending how
									automated the
									system is.
	Reverse	Flow	Could	Recycle process	Differential	3	1	IV	Would imply a
			result in	does not yield	pressure				serious issue at the
				product, and can	sensor to				end of the siloxane

		equipmen	disrupt the	determine				polymerization
		t failure.	siloxane	the direction				process, or a
			polymerization	of flow.				buildup of pressure
			process					in the column over
								time.
High	Temperatur	none	larger column1	Thermocoupl	1.5	2	IV	One heat
	e		feed temperature	e on feed				exchangers would
								not function
								properly
Low	Temperatur	none	Separation will be	Thermocoupl	1	2	IV	Thermocouple not
	е		off specification	e along the				required
				feed				
High	Pressure	none	Separation will be	Pressure	2	2	IV	
			off specification	sensor in				
				feed				
Low	Pressure	none	Better separation,	Pressure	2	1	IV	
			Higher operating	sensor in				
			cost	feed				

Name	Guide	Parameter	Potential	Effect	<u>Safeguard</u>				Actions/Comme
	Word		<u>Hazard</u>			<u>Consequen</u>	Frequen	Ris	<u>nts</u>
						ce	су	k	
Distkkkkkkkkkkkkkkkkkkkk	Low	Flow	none	More	Flow sensor	1	2	IV	
kkkk-1				cooling	at the exit				
				utility	of the reflux				
				used than	drum				
				needed	leading to				
					the distillate				
	High	Flow	Not	Residenc	Flow sensor	3	1	IV	At higher flow
			directly in	e time in	at exit of				rates the hot
			this section	the	reflux drum				stream is not
			of the	sequentia	to the				cooled below
			stream,	l heat	distillate				the flash point.

		but does prove to be hazardous downstrea m	exchange r will be decrease d.					
No	Flow	None on this stream	No Acetonitri le product being made. Leaves the rest of the system in disarray	Flow rate sensor at the exit of the reflux drum to the distillate	3	2	111	Could indicate a malfunctioning reboiler which would result in only a liquid flow and no vapor flow to the condenser.
Revers e	Flow	none	No Acetonitri le recovery. Possible damage to equipmen t	Differential pressure sensor to determine the direction of flow.	3	1	IV	Could be caused by a malfunctioning compressor
Low	Pressure	If pressure is exceptiona Ily low it is possible for the to the ACN product	Lower capacity flow rate thus less heat transferre d	Differential pressure sensor at the exit of the reflux drum leading to the distillate	4	1		

		leaving the exchanger to have lower flash						
		point						
High	Pressure	none	Pressure exiting pump will be above 1 bar	Flow sensor at the exit of the reflux drum leading to the distillate	1	2	IV	
Low	Temperatu re	none	More cooling utility will be used than needed.	Thermocou ple at the exit of the reflux drum leading to the distillate	1	2	IV	Not unsafe, but is operating less efficiently.

Name	Guide	<u>Parameter</u>	Potential	Effect	<u>Safeguard</u>				Actions/Comments
	<u>Word</u>		Hazard			<u>Consequence</u>	<u>Frequency</u>	<u>Risk</u>	
ACN	High	Flow	Serious	Exit into	Flow sensor	4	1	Ш	Emphasize
PROD			injury/death	container will	and				workplace safety
			could result	be above flash	temperature				precautions
				point	sensor at the				
					entrance and				
					exit of the				
					heat				
					exchanger. Fail				
					close valve will				
					be needed.				

Low	Flow	none	More utility will be used than needed	Flow sensor at inlet of heat exchanger	2	1	IV	
No	Flow	none	No ACN is being produced	Flow sensor anywhere after the compressor pump.	3	1	IV	No revenue is made from the ACN product
High	Temperature	Serious injury/death to any personnel. Possible damage to equipment and facility	ACN is above flash point	Use a control loop that utilizes a Thermocouple on the stream leaving the heat exchanger and a fail close valve before the exit	4	1	111	
Low	Temperature	none	More cooling utility used than needed.	Thermocouple exiting the exchanger	2	1	IV	A lower temperature indicates less material used. This implies the bottoms of column 1 entering column 2 will have ACN that will make the toluene feed impure and non- profitable
High	Pressure	Increased chance to	Indicates a block or valve	Include a pressure	3	1	IV	Schedule routine maintenance to

		leak or	malfunction	sensor after				check for leaks and
		rupture.	that is causing	the heat				ruptures
		Possible	a pressure	exchanger,				
		personnel	buildup. The	and				
		contact to	pressure sensor	implement a				
		ACN	earlier on in	control loop to				
			the stream	sound an				
			could also be	alarm at				
			malfunctioning.	different				
				safety				
				thresholds				
Low	Pressure	none	Malfunctioning	Include	1	2	IV	
			compressor	pressure				
			pump	sensor as well				
				as a flow				
				meter before				
				and after the				
				compressor.				
				Compare inlet				
				and outlet				
				values to				
				determine				
				pump power.				

<u>Name</u>	<u>Guide</u>	<u>Parameter</u>	Potential	<u>Effect</u>	<u>Safeguard</u>				Actions/Comments
	<u>Word</u>		<u>Hazard</u>			<u>Consequence</u>	<u>Frequency</u>	<u>Risk</u>	
H-	High	Flow	none	Not enough	Flow senso	r 4	2	П	Could be a result of
WASTE2				cooling utility	before the				flash drum
				to meet	entrance to				malfunction, or an
				required	the next hea	it			issue earlier on in
				design	exchanger				the process. Halt
				specifications					process if flow rate
									is too high
	No	Flow	None	Siloxane will	Control loc	op 3	1	IV	
				appear in the	equipped w	ith			
				recycle	two differen	tial			
				stream, and	pressure				
				the entire	transmitter	rs.			
				process will no	One will b	e			
				longer	place in th	e			
				function up to	waste strea	m			
				specifications	directly leav	ing			
				as well as	the flash dru	ım.			
				damage to	The other w	vill			
				equipment.	be in the H	1-			
					WASTE2				
					stream.				
	High	Temperature	none on	Subsequent	Thermocou	ple 4	1	IV	If flow rate is
			this	heat	and flow ra	te			within set
			stream	exchangers are	e sensor				tolerance it could
				not designed					indicate a
				for this					malfunction in the
				temperature					previous heat
				which will					exchanger. Or
				result in highe	r				another error
				temperatures					earlier in the
				further down					process (Most
				the stream					

				Likely condenser
				malfunction).

Name	<u>Guide</u>	Parameter	Potential	Effect	Safeguard				Actions/Comments
	Word		Hazard			<u>Consequence</u>	Frequency	<u>Risk</u>	
MEK-	Low	Flow	Some Hot	Not enough	Implement a	3	1	IV	Ensure the
IN			streams	Cooling utility.	Control loop				safeguard is
			that are	Halt process	that utilizes a				installed, else there
			above their	until flow rate	fail open valve				will be an increase
			flash points	is resolved.	on MEK				in risk and possible
			will be open		stream inlet to				liabilities
			to the		the heat				
			atmosphere		exchanger,				
					and a fail close				
					valve on the				
					hot stream				
					inlet to				
					exchanger.				
	Reverse	Flow	Some Hot	Will violate the	Implement a	4	1	III	Unlikely, but if it
			streams	countercurrent	differential				occurs. The system
			that are	design of the	pressure				will require
			above their	heat	transducer to				shutdown until
			flash points	exchanger and	determine the				safe operating
			will be open	decrease the	magnitude				conditions can be
			to the	amount of	and direction				met again
			atmosphere	cooling utility.	of flow				
	High	Flow	None	Using more	Flow sensor at	1	2	IV	
				cooling utility	inlet to				
				than needed	exchanger				
	High	Temperature	Some Hot	Lowers the log	Thermocouple	4	1		Not likely, but if
			streams	mean	before the				the thermocouple
			that are	temperature	inlet to the				read a value higher
			above their	difference	heat				than the accepted
			flash points	which will	exchanger				value shutdown
			will be open	decrease heat					operation until safe
			to the	transfer					operating
			atmosphere						conditions are met.

<u>Name</u>	<u>Guide</u>	<u>Parameter</u>	Potential	Effect	<u>Safeguard</u>				Actions/Comments
	<u>Word</u>		<u>Hazard</u>			<u>Consequen</u>	Frequenc	<u>Risk</u>	
						<u>ce</u>	У		
CW-	Low	Flow	Hot	Not enough	PID control	4	1	Ш	Emphasize importance in
IN			stream	cooling	loop				daily safety checklist
			doesn't	utility will be	connected				
			get cooled	supplied	to a				
			past the	resulting in a	differential				
			flash	higher hot	pressure				
			point.	stream	transducer				
				outlet	and a				
				temperature	control valve				
				than desired					
	No	Flow	Will most	No cooling	PID control	4	2	Ш	Failure most likely
			certainly	utility.	loop				resulting from a
			result in		connected				malfunctioning valve, or
			errors		to a				more severely an issue
			further in		differential				with the house water
			the system		pressure				system
					transducer				
					and a				
					control valve				
	Reverse	Flow	Will result	Cooling duty	PID control	4	1	Ш	Could have resulted from
			in	(if any) will	loop				years of siloxane
			hazardous	be	connected				particulate buildup
			situations	insufficient	to a				
			further in		differential				
			the system		pressure				
					transducer				
					and a				
					control valve				
	High	Temperature	Will result	Cooling duty	Thermocoup	4	1	III	
			in	will be will	le, control				

	hazardous	be	loop, and						
	situations	insufficient	alarm						
	further in								
	the								
	system,								
	but this								
	stream is								
	not								
	directly								
	hazardous								
Name	<u>Guide</u>	Parameter	Potential	Effect	Safeguard				Actions/Comments
--------	--------------	------------------	------------------	-------------------	------------------	--------------------	------------------	-------------	------------------
	<u>Word</u>		<u>Hazard</u>			<u>Consequence</u>	<u>Frequency</u>	<u>Risk</u>	
High P	low	flow	No	Column 2	Flow rate	4	1	Ш	
Steam			immediate	reboiler does	sensor in				
			hazard, but	not vaporize	the inlet to				
			will result in	enough of the	the reboiler				
			off spec	liquid to stay at	in column 2				
			recycle and	set specification					
			waste that	leading to					
			will be above	flooding					
			the flash						
			point						
	High	flow	Toluene	Most material	Flow rate	4	1	1111	
			product	will end in the	sensors on				
			stream will	distillate.	steam				
			be above its	Increasing the	entering				
			flash point	capacity flow of	the reboiler				
				the toluene	in column 2				
				product stream					
				thus the change					
				in temperature					
				is less than					
				specified in the					
				design.					

Name	<u>Guide</u>	<u>Parameter</u>	<u>Potential</u>	Effect	<u>Safeguard</u>				Actions/Comments
	Word		<u>Hazard</u>			Consequence	<u>Frequency</u>	<u>Risk</u>	
RADFRAC1	High	Flow	none	Liquid level in	High Flow	3	1	IV	
				column will	alarm				
				rise gradually					
				until the					
				column					
				ceases to					
				work					
	Low/zero	Flow	If flow rate is	Temperature	Flow	3	1	IV	If precipitation of
			too small	rise in	sensors at				siloxane occurs.
			precipitation	column	both				Equipment will have
			of siloxane	causing most	feeds				to be cleaned at the
			may occur.	components					least which costs
				to go to the					money. Proving it is
				distillate					not economically
									viable to run the
									column at flow
									rates less than the
									design specification
	High	Level	Possible	Flooding, and	High level	2	1	IV	Best to shut down
			hazards later	reboiler stops	alarm,				the process, drain
			in column	functioning	and				the column, and
			due to the		shutdown				restart the process
			large liquid						after determining
			flow rate						the source of error.
	Low	Level	Column can	Possible	Low level	3	1	IV	Will usually be
			get too hot	chance	alarm				detected by level
				stages will					sensors, but can
				dry out					also found from
									differential pressure
									transmitters and
									thermocouple
									readings of the

								bottoms and distillate
High	Pressure	Column become more susceptible to leaks	Separation of ACN will not reach required design specification	Pressure sensor in column	3	1	IV	Follow city regulations on environmental waste disposal
Low	Pressure		Vacuum is using more power than needed	Pressure sensor at inlet and exit of vacuum pump	2	1	IV	Costly to run at pressures lower than .1 bar

Name	<u>Guide</u>	Parameter	Potential	Effect	Safeguard				Actions/Comments
	<u>Word</u>		Hazard			<u>Consequence</u>	<u>Frequency</u>	<u>Risk</u>	
Heat	High	Inlet cooling	The stream	There is a	Thermocouple	3	1	IV	
Exchanger		stream	itself is not	decrease in	at the Inlet of				
		temperature	hazardous,	the rate of	the cooling				
			but the	cooling due	stream				
			insufficient	to the lower					
			cooling of	value of the					
			easily	log mean					
			ignitable	temperature					
			materials can	difference					
			be.						
	High	Exit hot	Product is	The hot exit	Thermocouples	4	1	III	Use/write a
		stream	above its	stream	and Flow				program help in the
		temperature	flash	stream is not	sensors placed				automation
			temperature,	cooled below	at the hot				process. Have it
			and exposed	its flash	stream				cross check
			to open air	temperature,	entrance and				measured values
				and exposed	exit as well as				and design specific
				to open air	the inlet				values, and if it is
					cooling stream.				out of the accepted
					Also include a				tolerance value
					fail close valve				actuate the fail
					on the hot				close valve and
					stream exit				sound an alarm.

Equipment	Ruptured	Outlet hot	The cooling	Include	4	1		If cross
Malfunction	tube	stream	stream and	flow rate				contamination is
		could be	heating	sensors at				allowed to
		above flash	stream cross	all inlets				continue or goes
		and open to	contaminate	and exits of				unnoticed; entire
		atmosphere		exchanger				process streams
				to				

		determine		
		if there is		
		crossover		

Appendix F: Utility Summary

The subsequent tables are a summary of the refrigerants used, and their annual cost assuming a working year of 8000 hours. Each calculation is based on the utility price displayed below in table G-1.

Utility Cost							
Cooling Water	0.000402	\$/kg					
MEK	0.000019706	\$/kJ					
Steam (P,T)							
172 kPa, 115 C	0.0211	\$/kg					
1034 kPa, 181.4 C	0.0244	\$/kg					
Electricity	0.00002	\$/kJ					

Table G-1: Cost of Cooling, Heating, and Electrical Utilities

i. Electric Usage:

Electricity Usage								
	Electricity [kW]	\$/kW	Annual Cost					
Pump -1	3.60E-02	7.19E-07	\$202					
Pump -2	3.39E-02	6.79E-07	\$19					
Vacuum Pump	3.00E+01	4.60E-04	\$13,261					
		Total	\$13,301					

Table G-2: Cost to Run Electrical Equipment

ii. Cooling Water Usage

Table	G-3:	Cooling	Water
-------	------	---------	-------

Cooling Water Usage							
Unit	Unit Mass Flow [kg/hr] Annual Cost						
E2-A	940.1	\$30,244.87					

	Total		\$95,497.51
Condenser 2		2000	\$64,320.00
E4-C		29.2	\$932.64
E4_C		20.2	¢032

iii. MEK Usage

MEK Usages						
Unit	kW Required	Annual Energy Consumption (kJ)	Cost of MEK	True Cost		
E1	1.4	40320000	\$794	\$3,971		
E2-B	0.7	20160000	\$397.	\$1,588		
E3-B	8.76	252288000	\$4,970	\$19,880		
ED-4	0.325	9360000	\$184	\$737		
Cond 1	160	4608000000	\$90,777	\$363,110		
			Total	\$389,288		

iv. Steam Usage

Table G-5: Steam Consumption

Steam Usage					
Unit	Steam Flow [kg/hr]	Cost [\$/kg]	Annual Cost		
Reboiler 1	300	0.0211	\$50,640		
Reboiler 2	300	0.0244	\$58,560		
Flash Drum	12.35	0.0244	\$2,411		
		Total Cost	\$111,611		

Appendix G: Inherently Safer Design Checklist

- I. Minimize
 - A. Inventory Reduction (Calibri body)
 - 1. Can hazardous raw materials inventory be reduced? <u>No. All profit comes from the recycling of hazardous materials back into the process.</u>
 - 2. Can in-process storage and inventory be reduced? <u>No. Already taken into consideration</u>
 - 3. Can finished product inventory be reduced? <u>No.</u>
 - B. Process Considerations
 - 1. Can the use of alternate equipment with reduced hazardous material inventory requirement be done? Such as:
 - a) Continuous in-line mixers in place of mixing vessels Yes. It would be costly, and would severely alter the process
 - b) Compact heat exchangers (higher heat transfer area per unit volume) in place of shell-and tube

No. The flow rate is too high for a feasible compact exchanger.

c) Combine unit operations (such as reactive distillation in place of separate reactor with multi-column fractionation train; installing internal reboilers or heat exchangers) to reduce overall system volume

No. No stream would provide adequate heat duty to replace a reboiler.

- Has piping been designed for reducing the piping diameters?
 <u>Will be considered in later design. The only exception being the gravity</u> <u>driven cooling streams.</u>
- Can pipeline inventory be reduced by using the hazardous material as a gas rather than a liquid (e.g., chlorine)?
 <u>No.</u>
- 4. Can process conditions be changed to reduce production of hazardous waste or by-products?

No. The process is currently operating at the minimum allowable concentration of p-xylene in the waste.

II. Substitute

- A. Is it possible to completely eliminate hazardous raw materials, process intermediates, or by-products by using an alternative process or chemistry? <u>No. The process is chemical specific.</u>
- B. Is it possible to completely eliminate in-process solvents and flammable heat transfer media by changing chemistry or processing conditions?
 No. The addition of p-xylene is needed to separate toluene from acetonitrile.
- C. Is it possible to substitute less hazardous raw materials? No.
- III. Moderate
 - A. Is it possible to limit the supply pressure of raw materials to less than the maximum allowable working pressure of the vessels they are delivered to? No. All pressures are set and decreasing pressure would just tax the system further.
 - B. Is it possible to make reaction conditions (temperature, pressure) less severe by using a catalyst, or a better catalyst?
 <u>No. Already taken into consideration with the addition of p-xylene to increase the ease of separation.</u>
 - C. Can the process be operated at less severe conditions? No. All temperatures and pressures are set to meet separation specifications.
 - D. Is it possible to dilute hazardous raw materials to reduce the hazard potential? <u>No.</u>
 - E. Is it possible to design operating conditions such that materials that become unstable at elevated temperatures or freeze at low temperatures heating and cooling medium will not be operating in those ranges?
 No. Sharp Separation, in this case, can only be achieved at elevated temperatures.
 - F. Can process conditions be changed to avoid handling flammable liquids above their flash points?

Yes. The changes have already been implemented.

- G. Is equipment designed to totally contain the materials that might be present inside at ambient temperature or the maximum attainable process temperature (i.e., higher maximum allowable working temperature to accommodate loss of cooling, simplify reliance of external systems such as refrigeration systems to control temperature such that vapor pressure is less than equipment design pressure)? <u>Yes.</u>
- H. For processes handling flammable materials, is it possible to design the layout to minimize the number and size of confined areas and to limit the potential for serious overpressure in the event of a loss of containment and subsequent ignition?

Yes. Will be a major consideration in plant design.

- I. Can process units be located to eliminate or minimize adverse effects from adjacent hazardous installations? <u>Yes. Install splash guards on drains to reduce contamination. Isolate the exits of</u> the high volatility liquids in one section to reduce risk to the rest of plant.
- J. Can process units be designed to limit the magnitude of process deviations: Yes. Already taken into consideration.

- K. Can hazardous material liquid spill be prevented from entering drainage system/sewer? Yes. Install splash guards over waste water gutters. All flammable stream exits/containment should be at a lower height than the rest of the process to reduce contamination.
- L. For flammable materials, can spills be directed away from the storage vessel to reduce the risk of a boiling liquid expanding vapor explosion (BLEVE) in the event of a fire?

Yes. Design the plant on a slight incline, and implement different levels of drains.

M. Passive safety design is preferred. Can passive design be implemented? For example, to prevent or reduce fire damage, an active method is automatic water spray actuated by flame or heat detector; a procedural method by having an operator turn on the water spray, or passive method by using fire insulation.

Yes. Can see implications an implementations in the P&ID diagram.

- IV. Simplify
 - A. Can equipment be designed such that it is difficult or impossible to create a potential hazardous situation due to an operating or maintenance error? Such as:
 - 1. Easy operation of valves designed to prevent inadvertent errors Yes. Most of the valve actuators will be run autonomously.
 - 2. Simplified control displays Yes. Will be a consideration when deciding on the control software to use.
 - 3. Operate at lower pressure to limit release <u>No.</u>
 - 4. Operate at lower temperature to prevent run away reactions or material failure

Not possible. All temperatures are set to meet design specifications.

- 5. Use passive rather than active controls Yes. Currently implementing both.
- 6. Use buried or shielded tanks Yes. Already taken into consideration.
- Use fail-safe controls if utilities are lost Yes. Fail open valves on cooling utilities, and fail close valves on streams entering the atmosphere containing liquids above their flash point.
- 8. Limit the complexity and degree of instrumentation redundancy Yes. There are some instrumentation redundancies, but these redundancies help locate errors quickly.
- 9. Use refrigerated storage vs. pressurized storage <u>Yes. Already taken into consideration.</u>
- 10. Minimize connections, paths and number of flanges in hazardous processes

Yes. Needs to be considered in further design.

11. Use fewer bends in piping Yes. Should be considered later in the design process.

- 12. Use expansion loops in piping rather than bellows Yes. Space is not an issue, so an expansion loop should be used.
- 13. Design into the process, equipment isolation mechanism for maintenance Yes. Already taken into consideration, but should still be investigated further as the design evolves.
- 14. Limit manual operations such as filter cleaning, manual sampling, hose handling for loading/unloading operations, etc. Yes. The process is automated as much as possible.
- 15. Design vessels for full vacuum eliminating risk of vessel collapse <u>Yes. Already taken into consideration, i.e. of the vacuum pump.</u>
- 16. Design both shell and tube side of heat exchangers to contain the maximum attainable pressure, eliminating the need for pressure relief Yes.
- 17. Can the equipment be designed to make incorrect assembly impossible? Use equipment that clearly identifies status
- B. Can passive leak-limiting technology be used to limit potential loss of containment? Some examples include the following:

We are not at this point in the design process. A leak of a stream containing a liquid above its flash point is still a serious safety concern, thus this section should be taken into further consideration at a later point.

- 1. Blowout resistant gaskets <u>Yes.</u>
- 2. Increasing wall strength <u>Yes.</u>
- 3. Using fewer seams and joints <u>Yes.</u>
- 4. Providing extra corrosion/erosion allowance No. None of the materials used are considered very corrosive.
- 5. Reducing vibration Yes. Should at least be considered
- 6. Minimizing the use of open-ended, quick-opening valves <u>Yes.</u>
- Eliminating open-ended, quick-opening valves in hazardous service <u>Yes.</u>
- 8. Improving valve seating reliability <u>Yes.</u>
- 9. Eliminating unnecessary expansion joints, hoses, and rupture disks <u>Yes.</u>
- 10. Eliminating unnecessary sight glasses/glass rotameters <u>Yes.</u>
- V. Transport of Hazardous Materials
 - A. Can the plant be located to minimize need for transportation of hazardous materials?

Yes. The plant is supplying most of the hazardous materials back to itself. The waste is the only material leaving the plant and is composed of mostly p-xylene which can flash at temperatures slightly above room temperatures. Plant location should be considered, but is not mandatory.

- B. Can materials be transported:
 - 1. In a less hazardous form Yes. The waste should be kept refrigerated
 - 2. In a safer transport method. Yes. Consider using trains instead of semi-trucks to transport waste
 - 3. In a safer route Should be considered depending on location

i. Economics

a. Delivered Equipment Cost

This method is used to cost all equipment using values given by EconExpert $DEC = [Base Cost] \cdot [M_{factor}] \cdot [P_{factor}] \cdot [Delivery Fee]$ Where: $DEC \equiv Delievered \ Equipment \ Cost$ $M_{factor} \equiv Material \ Factor \ [From \ EconExpert]$ $P_{factor} \equiv Pressure \ Feactor \ [From \ EconExpert]$ $Delivery \ Fee = 1.1 \ (10\% \ Fee)$ $DEC_{ACNTower} = [\$8,886] * (1.7 * 4.0) * 1.1 = \$66,467$

b. Fixed Capital Investment

$$FCI = Total Plant Cost = Total Direct Cost (TDC) + Total Indirect Cost (TIC) + ContractingWhere:
$$TDC \equiv 244\% \text{ of } DEC_{total}$$
$$TIC \equiv 80\% \text{ of } DEC_{total}$$
$$Contracting \equiv 63\% \text{ of } DEC_{total}$$
Percentages Given by Peters and Timmerhaus (1981)
$$FCI = (2.44 + 0.8 + 0.63) \cdot [\$531,819]$$
$$FCI = \$2,058,140$$$$

c. Total Product Cost

 $Total \ Product \ Cost = Manufacturing \ Cost + General \ Expenses \\ Where: \\ Mfg \ Cost = 24.2\% \ of \ FCI + 15\% of \ Labor \ Cost + 55\% of \ (Labor + Superv. + Maint.) \\ General \ Expenses \equiv 15\% \ of \ Mfg \ Cost + 15\% \ of \ (Labor + Superv. + Maint.) \\ Total \ Product \ Cost = \$1,144,360 + \$320,100 = \$1,464,000 \\ \end{cases}$

d. Working Capital Investment (WCI)

 $WCI = 86\% of DEC_{total}$ WCI = \$457,360 [Recovered at year 20]

e. Total Capital Investment (TCI)

TCI = WCI + FCITCI = \$457,360 + \$2,060,000TCI = \$2,520,000

f. Labor Costs

Labor Cost =
$$\frac{1}{4} \cdot \left(\frac{8000 \text{ hr}}{\text{year}}\right) \cdot [\# \text{ Workers}] \cdot \left[\frac{\$}{\text{hr} \cdot \text{Worker}}\right] * [\text{Benefits}]$$

Where
Workers = 8
 $\frac{\$}{\text{hr}} = \25
Benefits = 1.7
Labor Cost = $\frac{1}{4} \cdot \left(8000 \frac{hr}{year}\right) \cdot (8 \text{ Workers}) \cdot \left(\frac{\$25}{hr \cdot Worker}\right) \cdot 1.7$
Labor Cost = $\frac{\$680,000}{yr}$

g. Annual Operating Cost (Total)

$$\begin{array}{l} \textit{Operating Cost} = \textit{Total Product Cost} + \textit{Utility Costs} + \textit{Labor} + \textit{Raw Materials} \\ & \text{Where} \\ \textit{Utility Cost} \equiv \Sigma[\textit{Heating} + \textit{Cooling} + \textit{Electric}]_{\textit{costs}} \\ \textit{Utility Cost} \equiv \$637,280 (see utility summary) \\ \textit{Raw Materials} \equiv \textit{Xylene Purchased}, \textit{Waste Disposed} = \left[\dot{m}_{l} \cdot \left[\frac{\$}{kg}\right]_{l}\right] - 1.5 * \dot{m}_{\textit{waste}} \\ & \text{Where} \\ \dot{m}_{i} \equiv \textit{Mass Flow Rate of Xylene} \\ & \left[\frac{\$}{kg}\right]_{l} = \textit{Price Per Kilogram of Xylene} \\ & \text{Operating Cost} = \$1,464,460 + \$637,280 + \$680,000 + \$795,280 \\ & \text{Annual Operating Cost} = \frac{\$3.57Mil}{year} \text{ with a } 1^{st} \text{ year cost of } \$3.93 \textit{Mil} \\ \end{array}$$

h. SOYD Depreciation Value

$$SOYD \ Depreciation \ (year \ 20) = \frac{0.85 \cdot TCI}{SOYD}$$

$$Where$$

$$SOYD = 210$$

$$Year_{20} \ Depreciation = \left(\frac{0.85}{210}\right) * \$2,515,000 = \$10,182$$

$$Year_{12} \ Depreciation = Year_{20} \ Depreciation * [11 \ Useful \ Years \ Remaining]$$

$$Year_{10} \ Depreciation = \$122,182$$

i. After Tax Cash Flow

 $ATCF = 0.6 \cdot [BTCF - Year_n Deprectation]$ Where

$$BTCF \equiv Revenue - Total Product Cost$$
$$ACTF_{yr12} = 0.6 * [\$6,102,760 - \$91,640] = \$3,698,300$$

j. ROR

The rate of return was calculated in excel using the built-in IRR function with our after tax cash flow as input.

ii. Equipment Sample Calculations

a. Liquid Ring Vacuum Pump

Installed Cost =
$$$28,000 \left(\frac{HP}{10}\right)^{0.5} * 2.62$$

2.62 = Factor to adjust cost from 1981 to 2015
Installed Cost = $$88,600$

b. Mixer:

$$Volume_{70\%} = Vol. Flow in * Holding Time$$
$$Volume_{70\%} = 3.94 \frac{L}{min} * 5 \min * \left(\frac{1m^3}{1000L}\right) = 0.0256m^3$$
$$\frac{Height}{Diameter} = 4 (assumed)$$
$$\therefore H = 0.36m \qquad D = 0.09m$$

c. Column Height

$$\begin{aligned} Height_{Column} &= n_{theoretical} * HETP_{packing} * 1.15 \\ H_{ACN \ Column} &= 23 * 0.08m * 1.15 = 2.39m \end{aligned}$$

d. Flash Drum

$$Flv = \frac{W_l}{W_v} * \left(\frac{\rho_v}{\rho_l}\right)^{.5}$$

$$K_{drum} = e^{A + Bln(Flv) + C(\ln(flv))^2 + D * (\ln(Flv))^3 + E * (\ln(Flv))^4}$$

$$u_{perm} = K_{drum} * \left(\frac{(\rho_l - \rho_v)}{\rho_v}\right)^{.5}$$

$$V = \frac{u_{perm}A_c\rho_v}{MW_{vap}}$$

$$\label{eq:relation} \begin{split} \rho &= \mbox{density} \\ W &= \mbox{mass flow rate} \\ Flv &= \mbox{empirical ratio} \end{split}$$

Constant	Value	
А	-1.877478097	
В	8145804597	
С	1870744085	
D	0145228667	
E	0010148518	

 $\begin{array}{l} \text{A-E} = \text{constants} \\ \text{K}_{\text{drum}} = \text{case specific constant} \\ \text{U}_{\text{perm}} = \text{Max velocity at max diameter of flash drum. (Ft/s)} \\ \text{V} = \text{Molar flow rate} \\ \text{A}_{\text{c}} = \text{Cross sectional error} \\ \text{MW}_{\text{vap}} = \text{Molecular weight of the vapor} \end{array}$

e. Storage Tank Volume

$$Volume_{tank} = 2 * V_{50\%}$$
Where:

$$V_{50\%} = \dot{V}_{in} * Fill Time$$
For the ACN Product Tank

$$V_{tank} = 2 \cdot \left(\frac{4.7m^3}{day}\right) \cdot (2 Days) = 18.8m^3$$

Appendix I: References

References

- 1. Wankat, Phillip C. Separation Process Engineering. Upper Saddle River, NJ: Prentice Hall, 2012.
- 2. Blackwell, W. W. Chemical Process Design on a Programmable Calculator. New York: McGraw-Hill, 1984.
- 3. Peters and Timmerhaus (1981)
- Sultzer. Structured Packings. https://www.sulzer.com/en/-/media/Documents/ProductsAndServices/Separation_Technology/Structured_Packings/ Brochures/Structured_Packings.pdf
- 5. Failure Modes and Effects Analysis (FMEA). http://asq.org/learn-about-quality/processanalysis-tools/overview/fmea.html
- 6. Reliasoft. Sample Automotive Process FMEA (PFMEA) generated with Xfmea. http://www.reliasoft.com/pubs/xfmea_pfmea.pd
- 7. http://www.cbme.ust.hk/safetycourse/download/09.1HAZOPStudyTrainingCourse.pdf